Reactivity of Group 10 halides toward ($\left.\mathrm{Ph}_{2} \mathrm{PN}=\right) \mathrm{C}(\mathrm{Ph})\left[\mathrm{N}\left(\mathrm{SiM} \mathrm{e}_{3}\right)_{2}\right]$, $\left(\mathrm{NC}_{5} \mathrm{H}_{4}\right)\left\{\left(\mathrm{Ph}_{2} \mathrm{PN}=\right) \mathrm{C}\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right]\right\}-4$ and $\mathrm{C}_{6} \mathrm{H}_{4}\left\{\mathrm{C}\left(=\mathrm{NPPh} \mathrm{h}_{2}\right)\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right]\right\}_{2}-1,4 \dagger$

Wai-Kwok Wong, ${ }^{*, a}$ C haode Sun ${ }^{\text {a }}$ and Wing-Tak Wong*, ${ }^{\text {b }}$
a D epartment of Chemistry, H ong K ong Baptist U niversity, K owloon, H ong K ong
${ }^{\text {b }}$ D epartment of C hemistry, The U niversity of H ong K ong, Pokfulam R oad, H ong K ong

Abstract

Interaction of $\left[\mathrm{NiBr}_{2}(\mathrm{dme})\right]$ (dme $=1,2$-dimethoxyethane) with 1 equivalent of $\left(\mathrm{Ph}_{2} \mathrm{PN}=\right) \mathrm{C}(\mathrm{Ph})\left[\mathrm{N}\left(\mathrm{SiM}_{3}\right)_{2}\right] \mathrm{L}^{1}$ in tetrahydrofuran gave cis-[$\left.\mathrm{NiBr}_{2}\left\{\left(\mathrm{Ph}_{2} \mathrm{PNH}\right) \mathrm{C}(\mathrm{Ph})(=\mathrm{NH})\right\}\right] \mathbf{1}$, metathesis of this compound with excess $\mathrm{NH}_{4} \mathrm{BF} \mathrm{F}_{4}$ in methanol gave cis-[$\left.\mathrm{Ni}\left\{\left(\mathrm{Ph}_{2} \mathrm{PNH}\right) \mathrm{C}(\mathrm{Ph})(=\mathrm{NH})\right\}_{2}\right]\left[\mathrm{BF}_{4}\right]_{2}$ 2. Reaction of $\left[\mathrm{NiBr}_{2}(\mathrm{dme})\right]$ with 1 equivalent of $\left.\left(\mathrm{NC}_{5} \mathrm{H}_{4}\right)\left\{\mathrm{Ph}_{2} \mathrm{PN}=\right) \mathrm{C}\left[\mathrm{N}\left(\mathrm{SiM}_{3}\right)_{2}\right]\right\}-4 \mathrm{~L}^{3}$ followed by metathesis with excess $\mathrm{NH}_{4} \mathrm{BF}_{4}$ in methanol gave cis$\left[\mathrm{Ni}\left\{\left(\mathrm{NC}_{5} \mathrm{H}_{4}\right)\left[\left(\mathrm{Ph}_{2} \mathrm{PNH}\right) \mathrm{C}(=\mathrm{NH})\right]-4\right\}_{2}\right]\left[\mathrm{BF}_{4}\right]_{2}$ 3. Reaction of $\left[\mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}\right]$ with 1 equivalent of L^{1} in acetonitrile gave cis- $\left[\mathrm{PdCl}_{2}\left\{\left(\mathrm{Ph}_{2} \mathrm{PNH}\right) \mathrm{C}(\mathrm{Ph})(=\mathrm{NH})\right\}\right]$ 4, and with 0.5 equivalent of $\mathrm{C}_{6} \mathrm{H}_{4}\left\{\mathrm{C}\left(=\mathrm{NPPh}_{2}\right)\left[\mathrm{N}\left(\mathrm{SiM}_{3}\right)_{2}\right]\right\}_{2}-1,4 \mathrm{~L}^{2}$ in tetrahydrofuran gave cis-[(PdCl $\left.)_{2}\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left[\mathrm{C}\left(=\mathrm{NPPh}_{2}\right)\left\{\mathrm{N}\left(\mathrm{SiM} \mathrm{e}_{3}\right)_{2}\right\}\right]_{2}-1,4\right\}\right] 5$ and cis-[(PdCl $\left.)_{2}\right)_{2}\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left[\mathrm{C}\left(\mathrm{NHPPh}_{2}\right)-\right.\right.$ $\left.\left.(=\mathrm{NH})]_{2}-1,4\right\}\right]$. Interaction of $\left[\mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}\right]$ with L^{3} in $1: 1$ and $3: 2$ molar ratios gave cis- $\left[\mathrm{PdCl}_{2}\left\{\left(\mathrm{NC}_{5} \mathrm{H}_{4}\right)-\right.\right.$ $\left.\left.\left[\left(\mathrm{Ph}_{2} \mathrm{PNH}\right) \mathrm{C}(=\mathrm{NH})\right]-4\right\}\right] 7$ and trans-[PdCl $\left.\left\{\mathrm{cis}_{2}-\mathrm{PdCl}_{2}\left[\left(\mathrm{~N} \mathrm{C}_{5} \mathrm{H}_{4}\right)\left\{\left(\mathrm{Ph}_{2} \mathrm{PNH}\right) \mathrm{C}(=\mathrm{NH})\right\}-4\right]\right\}_{2}\right]$ 8, respectively. Reaction of $\left[\mathrm{M} \mathrm{Cl}_{2}(\mathrm{PhCN})_{2}\right]$ ($\mathrm{M}=\mathrm{Pd}$ or Pt) with 2 equivalents of L^{3} followed by metathesis with excess $\mathrm{NH}_{4} \mathrm{BF}_{4}$ in methanol gave cis-[M $\left.\left\{\left(\mathrm{NC}_{5} \mathrm{H}_{4}\right)\left[\left(\mathrm{Ph}_{2} \mathrm{PNH}\right) \mathrm{C}(=\mathrm{NH})\right]-4\right\}\left\{\left(\mathrm{NC}_{5} \mathrm{H}_{4}\right)\left[\left(\mathrm{Ph}_{2} \mathrm{PNH}\right) \mathrm{C}(=\mathrm{N})\right]-4\right\}\right]\left[\mathrm{BF}_{4}\right]$ (Pd 9 or Pt 10). Crystal structures of compounds $\mathbf{1 , 4 , 7 , 8 , 9}$ and $\mathbf{1 0}$ have been determined.

We have been interested in the preparation and the chemistry of phosphorus-nitrogen ligands as they are hemilabile ligands capable of exhibiting unusual co-ordination chemistry towards transition metals. Recently we have reported on the coordination chemistry of $\left(\mathrm{Ph}_{2} \mathrm{PN}=\right) \mathrm{C}(\mathrm{Ph})\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right] \mathrm{L}^{1}$ and $\mathrm{C}_{6} \mathrm{H}_{4}\left\{\mathrm{C}\left(=\mathrm{NPPh}_{2}\right)\left[\mathrm{N}\left(\mathrm{SiM} \mathrm{e}_{3}\right)_{2}\right]\right\}_{2}-1,4 \mathrm{~L}^{2}$ towards $\left[\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}\right]^{1}$, $\left[\mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}\right]^{2}$ and Group 6 metal carbonyl complexes. ${ }^{3}$ Herein we report the detailed study of the reactions of G roup 10 halide complexes with $\mathrm{L}^{\mathbf{1}}, \mathrm{L}^{2}$ and $\left(\mathrm{NC}_{5} \mathrm{H}_{4}\right)\left\{\left(\mathrm{Ph}_{2} \mathrm{PN}=\right)\right.$ $\left.\mathrm{C}\left[\mathrm{N}\left(\mathrm{SiM} \mathrm{e}_{3}\right)_{2}\right]\right\}-4 \mathrm{~L}^{3}$.

Results and D iscussion

Preparation of $\left(\mathrm{NC}_{5} \mathrm{H}_{4}\right)\left\{\left(\mathrm{Ph}_{2} \mathrm{PN}=\right) \mathbf{C}\left[\mathbf{N}\left(\mathrm{SiM}_{3}\right)_{2}\right]\right\}-4 \mathrm{~L}^{\mathbf{3}}$

The compound $\left(\mathrm{NC}_{5} \mathrm{H}_{4}\right)\left\{\left(\mathrm{Ph}_{2} \mathrm{PN}=\right) \mathrm{C}\left[\mathrm{N}\left(\mathrm{SiM}_{3}\right)_{2}\right]\right\}-4 \mathrm{~L}^{\mathbf{3}}$ was prepared in high yield (90%) as yellow crystals by reacting 4cyanopyridine with 1 equivalent of $\mathrm{Li}\left[\mathrm{N}\left(\mathrm{SiM}_{3}\right)_{2}\right]$ followed by 1 equivalent of $\mathrm{Ph}_{2} \mathrm{PCl}$ in tetrahydrofuran (thf). In CDCl_{3}, the ${ }^{31} \mathrm{P}$ - $\left\{{ }^{1} \mathrm{H}\right\} \mathrm{N}$ M R spectrum of L^{3} exhibited a singlet at $\delta 36.5$ for the PPh_{2} group. In addition to the phenyl and pyridinyl carbons and protons, L^{3} exhibited a doublet and a singlet at $\delta 167.9$ ($\mathrm{J}_{\mathrm{p}-\mathrm{Nc}}=26.7 \mathrm{~Hz}$) and 2.7 for the $\mathrm{C}=\mathrm{N}$ and the trimethylsilyl carbons, respectively, in the ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum; and a singlet at $\delta 0.06$ for the trimethylsilyl protons in the ${ }^{1} \mathrm{H}$ N M R spectrum. The low-resolution mass spectrum [fast atom bombardment (FAB), positive ion mode] of L^{3} exhibited a peak $(M+1)$ at $m / z 450$.

Preparation of cis-[$\left.\mathrm{NiBr}_{2}\left\{\left(\mathrm{Ph}_{2} \mathrm{PNH}\right) \mathrm{C}(\mathrm{Ph})(=\mathrm{NH})\right\}\right] 1$

The reaction of [$\mathrm{NiBr}_{2}(\mathrm{dme})$] (dme=1,2-dimethoxyethane) with 1 equivalent of L^{1} in refluxing tetrahydrofuran for 8 h gave red crystals of stoichiometry $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{~N}$ iP 1 in good yield (76%). The IR spectrum of complex 1 exhibited an absorption at $3273 \mathrm{~cm}^{-1}$ indicating the presence of NH groups. The ${ }^{31} \mathrm{P}$ -
\dagger This paper is dedicated to the late Professor Sir G eoffrey Wilkinson whom I valued very much as a good teacher as well as a good friend. I shall miss him.

L^{1}

L^{2}

L^{3}
\{ $\left.{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum in CDCl_{3} exhibited a singlet at $\delta 76.1$ for the PPh_{2} group. The positive increase in chemical shift from $\delta 36.5$ for the free ligand to $\delta 76.1$ for the co-ordinated ligand is characteristic of chelating ring formation. ${ }^{4}$ In addition to the phenyl and pyridinyl protons, the ${ }^{1} \mathrm{H}$ NMR spectrum also exhibited two broad singlets of relative intensity $1: 1$ at $\delta 5.48$ and 7.31 for the two non-equivalent NH protons. Based on the above data, compound 1 can be formulated as cis$\left[\mathrm{NiBr} r_{2}\left\{\left(\mathrm{Ph}_{2} \mathrm{PNH}\right) \mathrm{C}(\mathrm{Ph})(=\mathrm{NH})\right\}\right]$. This was confirmed by an X-ray diffraction study.

Suitable crystals of compound $\mathbf{1}$ were grown by slow evaporation of a saturated solution of 1 in dichloromethane. A perspective drawing of 1 is shown in Fig. 1. Selected bond lengths and angles are given in Table 1. The structure is consistent with the spectroscopic data. The nickel atom adopts a square-planar geometry with a cis- NiBr_{2} configuration. The bond angles around Ni range from 84.3(2) to $94.9(1)^{\circ}$ and sum up to approximately 360°. The $\mathrm{Ni}-\mathrm{Br}(1)$ and $\mathrm{Ni}-\mathrm{Br}(2)$ distances are 2.357(1) and 2.310(1) \AA, respectively. The $\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right.\right.$ NH $) \mathrm{C}(\mathrm{Ph})(=\mathrm{NH})$ \} moiety acts as a chelating ligand with the imino [$N(2)$] and phosphino P groups co-ordinated to the nickel forming a five-membered ring. Within the bidentate iminophosphine ligand, the $\mathrm{P}-\mathrm{N}(1)$ bond length of $1.705(5) \AA$ is in the normal range for a phosphorus-nitrogen single bond. The $C(1)-N(1)$ and $C(1)-N(2)$ distances of 1.357 (8) and 1.288(7) \AA, respectively, are intermediate between those expected for single $(1.46 \AA)$ and double ($1.26 \AA$) bonds indicating some delocalization about the $\mathrm{N}-\mathrm{C}-\mathrm{N}$ framework. The delocalization is also reflected in the $\mathrm{P}-\mathrm{N}(1)-\mathrm{C}(1)$ bond angle

Fig. 1 Perspective view of the molecular structure of compound 1

Table 1 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for compounds 1 and 4

Compound 1		Compound $\mathbf{4}$	
$\mathrm{Ni}-\mathrm{P}$	$2.130(2)$	$\mathrm{Pd}-\mathrm{P}$	
$\mathrm{Ni}-\mathrm{N}(2)$	$1.860(5)$	$\mathrm{Pd}-\mathrm{N}(2)$	$2.1871(3)$
$\mathrm{Ni}-\mathrm{Br}(1)$	$2.357(1)$	$\mathrm{Pd}-\mathrm{Cl}(1)$	$2.016(5)$
$\mathrm{Ni}-\mathrm{Br}(2)$	$2.310(1)$	$\mathrm{Pd}-\mathrm{Cl}(2)$	$2.3049(2)$
$\mathrm{P}-\mathrm{N}(1)$	$1.705(5)$	$\mathrm{P}-\mathrm{N}(1)$	$2.3633(3)$
$\mathrm{N}(1)-\mathrm{C}(1)$	$1.357(8)$	$\mathrm{N}(1)-\mathrm{C}(1)$	$1.692(5)$
$\mathrm{N}(2)-\mathrm{C}(1)$	$1.288(7)$	$\mathrm{N}(2)-\mathrm{C}(1)$	$1.372(7)$
			$1.293(7)$
$\mathrm{P}-\mathrm{Ni}-\mathrm{N}(2)$	$84.3(2)$	$\mathrm{P}-\mathrm{Pd}-\mathrm{N}(2)$	$82.6(1)$
$\mathrm{P}-\mathrm{Ni}-\mathrm{Br}(2)$	$88.6(1)$	$\mathrm{P}-\mathrm{Pd}-\mathrm{Cl}(1)$	$90.93(1)$
$\mathrm{Br}(1)-\mathrm{Ni}-\mathrm{Br}(2)$	$94.9(1)$	$\mathrm{Cl}(1)-\mathrm{Pd}-\mathrm{Cl}(2)$	$94.17(1)$
$\mathrm{Br}(1)-\mathrm{Ni}-\mathrm{N}(2)$	$92.3(2)$	$\mathrm{Cl}(2)-\mathrm{Pd}-\mathrm{N}(2)$	$92.3(1)$
$\mathrm{P}-\mathrm{N}(1)-\mathrm{C}(1)$	$115.2(4)$	$\mathrm{P}-\mathrm{N}(1)-\mathrm{C}(1)$	$116.7(4)$

of $115.2(4)^{\circ}$ which is intermediate between those expected of sp^{2} and sp^{3} nitrogen atoms. Similar observations have been reported for related chromium, ${ }^{5}$ platinum ${ }^{6}$ and rhodium complexes. ${ }^{6}$

Preparation of cis-[$\left.\mathrm{Ni}\left\{\left(\mathrm{Ph}_{2} \mathbf{P N H}\right) \mathrm{C}(\mathrm{Ph})\left(=\mathrm{NH}_{\mathrm{H}}\right)\right\}_{2}\right]\left[\mathrm{BF}_{4}\right]_{2} 2$

M etathesis of complex $\mathbf{1}$ with excess $\mathrm{NH}_{4} \mathrm{BF}_{4}$ in methanol gave yellow crystals of stoichiometry $\mathrm{C}_{38} \mathrm{H}_{34} \mathrm{~B}_{2} \mathrm{~F}_{8} \mathrm{~N}_{4} \mathrm{NiP}_{2} \mathbf{2}$ in moderate yield (47%). The IR spectrum of 2 exhibits an absorption at $3429 \mathrm{~cm}^{-1}$ indicating the presence of NH groups. The ${ }^{31 \mathrm{P}}-\left\{{ }^{1} \mathrm{H}\right\}$ NM R spectrum in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$ exhibited a singlet at $\delta 91.6$ indicating the presence of two equivalent PPh_{2} groups. In addition to the phenyl and pyridinyl protons, the ${ }^{1} \mathrm{H}$ NMR spectrum also exhibited two broad resonances centred at $\delta 7.10$ and 8.68 for the NH protons. The low-resolution mass spectrum (FAB, positive ion mode) exhibited a peak ($M+1-B F_{4}$) at $m / z 665$. The above spectroscopic data suggested that compound $\mathbf{2}$ can be formulated as either cis- or trans-[$\mathrm{Ni}\left\{\left(\mathrm{Ph}_{2} \mathrm{PNH}\right) \mathrm{C}(\mathrm{Ph})\right.$ ($=\mathrm{NH}$) $\left.\}_{2}\right]\left[\mathrm{BF}_{4}\right]_{2}$. The available spectroscopic data cannot distinguish between the two isomers. The structure of $\mathbf{2}$ was established by a preliminary X -ray diffraction study ${ }^{7}$ to be the cis isomer.

cis- isomer

trans- isomer

Preparation of cis-[Ni\{(NC $\left.\left.{ }_{5} \mathrm{H}_{4}\right)\left[\left(\mathrm{Ph}_{2} \mathrm{PNH}\right) \mathrm{C}(=\mathrm{NH})\right\} 4\right\}_{2}\left[\left[\mathrm{BF} \mathrm{t}_{4}\right]_{2}\right.$ 3

Interaction of $\left[\mathrm{NiBr}_{2}(\mathrm{dme})\right]$ with 1 equivalent of \mathbf{L}^{3} in tetrahydrofuran for 1 d followed by metathesis with $\mathrm{NH}_{4} \mathrm{BF}_{4}$ gave yellow crystals of stoichiometry $\mathrm{C}_{36} \mathrm{H}_{32} \mathrm{~B}_{2} \mathrm{~F}_{8} \mathrm{~N}_{6} \mathrm{NiP}_{2} 3$ in moderate yield (55%). The spectroscopic data of compound 3 are very similar to those of $\mathbf{2}$. In $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$, compound $\mathbf{3}$ exhibited a singlet at $\delta 92.5$ for the two equivalent PPh_{2} groups in the ${ }^{31} \mathrm{P}$ $\left\{{ }^{1} \mathrm{H}\right\}$ spectrum; and two broad resonances centred at $\delta 7.80$ and 8.89 for the NH protons in the ${ }^{1} \mathrm{H}$ NMR spectrum. The lowresolution mass spectrum (FAB, positive ion mode) exhibited a peak at $\mathrm{m} / \mathrm{z} 668$ for the $\left(\mathrm{M}-2 \mathrm{BF}_{4}\right)$ fragment. Since the related compounds $\mathbf{2}$ and $\mathbf{9}$ (see below) adopt a cis configuration, compound $\mathbf{3}$ is formulated as cis-[$\mathrm{Ni}\left\{\left(\mathrm{NC}_{5} \mathrm{H}_{4}\right)\left[\left(\mathrm{Ph}_{2} \mathrm{PNH}\right) \mathrm{C}(=\mathrm{NH})\right]\right.$ $\left.4\}_{2}\right]\left[B F_{4}\right]_{2}$.

Preparation of cis-[PdCl $\left.\left.I_{2}\left(\mathrm{Ph}_{2} \mathrm{PNH}\right) \mathrm{C}(\mathrm{Ph})(=\mathrm{NH})\right\}\right] 4$

The compound $\left[\mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}\right]$ was allowed to react with 1 equivalent of L^{1} in refluxing acetonitrile for 8 h , subsequent work-up gave yellow crystals of stoichiometry $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{~N}_{2}-$ $\mathrm{PPd} \cdot \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\left(4 \cdot \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)$ in moderateyield (60%) after recrystallization from an acetonitrile-tetrahydrofuran mixture. Compound 4 exhibited absorptions at 3449 and $3229 \mathrm{~cm}^{-1}$ in the IR spectrum (KBr), and a broad singlet at $\delta 8.14$ in the ${ }^{1} \mathrm{H} N \mathrm{NMR}^{2}$ spectrum for the NH groups. The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NM} R$ spectrum in $\mathrm{CD}_{3} \mathrm{CN}$ exhibited a singlet at $\delta 85.2$ for the PPh_{2} group indicating chelating ring formation. In addition to the phenyl and pyridinyl carbons, the ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\} \mathrm{N}$ M R spectrum also exhibited a doublet at $\delta 174.1(\mathrm{~J} \mathbf{p - N c}=12.2 \mathrm{~Hz})$ for the $\mathrm{C}=\mathrm{N}$ carbon. The low-resolution mass spectrum (FAB, positive ion mode) exhibited a peak $\left[(\mathrm{M}+1-\mathrm{Cl})\right.$ for ${ }^{106} \mathrm{Pd}$ and $\left.{ }^{35} \mathrm{Cl}\right]$ at $\mathrm{m} / \mathrm{z} 447$. The spectroscopic data of compound $\mathbf{4}$ are very similar to those of 1, thus compound 4 can be formulated as cis- $\left[\mathrm{PdCl}_{2}-\right.$ $\left.\left\{\left(\mathrm{Ph}_{2} \mathrm{PNH}\right) \mathrm{C}(\mathrm{Ph})(=\mathrm{NH})\right\}\right]$. This was confirmed by an X -ray diffraction analysis.
Crystals of $4 \cdot \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$ suitable for an X -ray diffraction study were grown by diffusion of tetrahydrofuran into a solution of 4 in acetonitrile. A perspective drawing of 4 is shown in Fig. 2. Selected bond lengths and angles are given in Table 1. Compound $\mathbf{4}$ is isostructural to $\mathbf{1}$, the geometry of the palladium atom is approximately square planar with a cis- PdCl_{2} configuration. The bond angles around Pd range from $82.6(1)$ to $94.17(1)^{\circ}$ and sum to approximately 360°. The $\mathrm{Pd}-\mathrm{Cl}(1)$ and $\mathrm{Pd}-\mathrm{Cl}(2)$ distances are 2.3049(2) and 2.3633(3) \AA, respectively. The $\left\{\left(\mathrm{Ph}_{2} \mathrm{PNH}\right) \mathrm{C}(\mathrm{Ph})(=\mathrm{NH})\right\}$ moiety acts as a chelating ligand with the imino [$\mathrm{N}(2)]$ and phosphino (P) groups co-ordinated to the palladium forming a five-membered ring. Within the five-membered chelating ring, the $\mathrm{P}-\mathrm{N}(1), \mathrm{C}(1)-\mathrm{N}(1)$ and $\mathrm{C}(1)-\mathrm{N}(2)$ distances are $1.692(5), 1.372(7)$ and $1.293(7) \AA$,

Fig. 2 Perspective view of the molecular structure of compound 4

5

respectively; and the $\mathrm{P}-\mathrm{N}(1)-\mathrm{C}(1)$ bond angle is $116.7(4)^{\circ}$ indicating delocalization about the $\mathrm{N}-\mathrm{C}-\mathrm{N}$ framework.

P reparation of cis-[(P dCl $)_{2}\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left[\mathrm{C}\left(=\mathrm{NPPh}_{2}\right)\left\{\mathrm{N}\left(\mathrm{SiM} \mathrm{e}_{3}\right)_{2}\right\}\right]_{2}-\right.$ 1,4\}] 5 and cis-[($\left.\mathrm{PdCl}_{2}\right)_{2}\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left[\mathrm{C}(\mathrm{N} \mathrm{H} \mathrm{P} \mathrm{Ph})(=\mathrm{NH}) \mathbf{l}_{2}-1,4\right\}\right] 6$

Interaction of $\left[\mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}\right]$ with 0.5 equivalent of L^{2} in tetrahydrofuran at room temperature gave a tetrahydrofuransoluble orange-red product and a tetrahydrofuran-insoluble yellow product. Recrystallization of the orange-red product in tetrahydrofuran gave orangered crystals of stoichiometry $\mathrm{C}_{44} \mathrm{H}_{60} \mathrm{Cl}_{4} \mathrm{~N}_{4} \mathrm{P}_{2} \mathrm{Pd}_{2} \mathrm{Si}_{4} 5$ in moderate yield (30\%). The ${ }^{31} \mathrm{P}$ - $\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $5 \mathrm{CD}_{3} \mathrm{CN}$ exhibited a singlet at $\delta 57.6$ indicating the presence of two equivalent PPh_{2} groups. Compound $\mathbf{5}$ also exhibited a singlet at $\delta 0.32$ in the ${ }^{1} \mathrm{H}$ N M R spectrum and a singlet at $\delta 3.2$ in the ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\} \mathrm{N} M \mathrm{R}$ spectrum for the trimethylsilyl groups. The low-resolution mass spectrum (FA B, positive ion mode) exhibited a peak [$(\mathrm{M}-\mathrm{Cl})$ for ${ }^{106} \mathrm{Pd}$ and $\left.{ }^{35} \mathrm{Cl}\right]$ at m / z 1137. On the basis of the above data, compound 5 can beformulated as cis-[($\left.\left.\mathrm{PdCl}_{2}\right)_{2}\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left[\mathrm{C}\left(=\mathrm{NPPh}_{2}\right)\left\{\mathrm{N}\left(\mathrm{SiM}_{3}\right)_{2}\right\}\right]_{2}-1,4\right\}\right]$.

Recrystallization of the tetrahydrofuran-insoluble yellow product in dimethylformamide-tetrahydrofuran gave yellow crystals of stoichiometry $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{Cl}_{4} \mathrm{~N}_{4} \mathrm{P}_{2} \mathrm{Pd}_{2} \cdot 6 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$ $\left(6 \cdot 6 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)$ in moderate yield (50%). Compound 6 exhibited an absorption at $3524 \mathrm{~cm}^{-1}$ in the IR spectrum (K Br), and two broad singlets of intensity $2: 2$ at $\delta 9.16$ and 10.43 in the ${ }^{1} \mathrm{H}$

Scheme 1 Results of the interaction of $\left[\mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}\right]$ with $\mathbf{L}^{\mathbf{3}}$

Fig. 3 Perspective view of the molecular structure of compound 7
NM R spectrum for the N H groups. The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\} \mathrm{N} M \mathrm{R}$ spectrum in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ exhibited a singlet at $\delta 85.3$ indicating the presence of two equivalent PPh_{2} groups and the formation of two equivalent chelating five-membered rings. The structure of compound 6 was established by X-ray diffraction analysis ${ }^{2}$ to be a dinuclear species with C_{2} symmetry.

Preparation of cis-[PdCl $\left.\mathbf{I}_{2}\left\{\left(\mathrm{NC}_{5} \mathrm{H}_{4}\right)\left[\left(\mathrm{Ph}_{2} \mathrm{PNH}\right) \mathrm{C}(=\mathrm{NH})\right]-4\right\}\right] 7$

The results of the interaction of $\left[\mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}\right]$ with L^{3} are summarised in Scheme 1. When $\left[\mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}\right]$ was treated with $\mathbf{L}^{\mathbf{3}}$ in a 1:1 molar ratio in tetrahydrofuran for 16 h at ambient temperature, subsequent work-up gave yellow crystals of stoichiometry $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}{ }_{3} \mathrm{PPd} \cdot \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\left(7 \cdot \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)$ in moderate yield (65\%) after recrystallization from a tetrahydrofuran solution. The ${ }^{31} \mathrm{p}-\left\{{ }^{1} \mathrm{H}\right\} \mathrm{N} M \mathrm{R}$ spectrum in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ exhibited a singlet at $\delta 85.1$ for the PPh_{2} group. Compound 7 also exhibited absorptions at 3214 and $3448 \mathrm{~cm}^{-1}$ in the IR spectrum (K Br)

Fig. 4 Perspective view of the molecular structure of compound $\mathbf{8}$

Table 2 Selected bond lengths (\AA) and angles (${ }^{\circ}$) for compounds 7 and 8

Compound 7		$\mathrm{Compound} \mathbf{8}$	
$\mathrm{Pd}-\mathrm{Cl}(1)$	$2.293(2)$	$\mathrm{Pd}(1)-\mathrm{Cl}(1)$	$2.293(2)$
$\mathrm{Pd}-\mathrm{Cl}(2)$	$2.365(2)$	$\mathrm{Pd}(1)-\mathrm{N}(1)$	$2.207(7)$
$\mathrm{Pd}-\mathrm{P}$	$2.187(2)$	$\mathrm{Pd}(2)-\mathrm{Cl}(2)$	$2.300(3)$
$\mathrm{Pd}-\mathrm{N}(2)$	$2.018(7)$	$\mathrm{Pd}(2)-\mathrm{Cl}(3)$	$2.364(3)$
$\mathrm{P}-\mathrm{N}(1)$	$1.699(7)$	$\mathrm{P}(2)-\mathrm{P}(1)$	$2.182(3)$
$\mathrm{N}(1)-\mathrm{C}(13)$	$1.366(10)$	$\mathrm{Pd}(2)-\mathrm{N}(3)$	$2.004(9)$
$\mathrm{N}(2)-\mathrm{C}(13)$	$1.296(10)$	$\mathrm{P}(1)-\mathrm{N}(2)$	$1.722(9)$
		$\mathrm{N}(2)-\mathrm{C}(6)$	$1.36(1)$
		$\mathrm{N}(3)-\mathrm{C}(6)$	$1.27(1)$
$\mathrm{Cl}(1)-\mathrm{Pd}-\mathrm{Cl}(2)$	$95.65(9)$	$\mathrm{Cl}(1)-\mathrm{Pd}(1)-\mathrm{N}(1)$	$89.9(2)$
$\mathrm{P}-\mathrm{Pd}-\mathrm{Cl}(1)$	$90.56(9)$	$\mathrm{Cl}(1 *)-\mathrm{Pd}(1)-\mathrm{N}(1)$	$90.1(2)$
$\mathrm{Cl}(2)-\mathrm{Pd}-\mathrm{N}(2)$	$93.0(2)$	$\mathrm{Cl}(2)-\mathrm{Pd}(2)-\mathrm{Cl}(3)$	$94.8(1)$
$\mathrm{P}-\mathrm{Pd}-\mathrm{N}(2)$	$82.9(2)$	$\mathrm{Cl}(2)-\mathrm{Pd}(2)-\mathrm{P}(1)$	$91.6(1)$
$\mathrm{P}-\mathrm{N}(1)-\mathrm{C}(13)$	$117.3(5)$	$\mathrm{Cl}(3)-\mathrm{Pd}(2)-\mathrm{N}(3)$	$91.7(3)$
$\mathrm{N}(1)-\mathrm{C}(13)-\mathrm{N}(2)$	$117.9(7)$	$\mathrm{P}(1)-\mathrm{Pd}(2)-\mathrm{N}(3)$	$80.0(3)$
		$\mathrm{Pd}(2)-\mathrm{N}(3)-\mathrm{C}(6)$	$120.6(7)$
		$\mathrm{P}(1)-\mathrm{N}(2)-\mathrm{C}(6)$	$113.8(7)$
	$\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{N}(3)$	$120.8(10)$	

and two broad singlets at $\delta 9.35$ and 10.52 in the ${ }^{1} \mathrm{H}$ NMR spectrum for the N H groups. The low-resolution mass spectrum (FAB, positive ion mode) exhibited a peak [(M +1) for ${ }^{106} \mathrm{Pd}$ and $\left.{ }^{35} \mathrm{Cl}\right]$ at $\mathrm{m} / \mathrm{z} 482$. Based on the spectroscopic data, compound 7 can be formulated as cis-[$\mathrm{PdCl}_{2}\left\{\left(\mathrm{NC}_{5} \mathrm{H}_{4}\right)\right]\left(\mathrm{Ph}_{2} \mathrm{PNH}\right)$ $\mathrm{C}(=\mathrm{NH})$)]-4\}]. This was confirmed by an X-ray diffraction study.

Crystals of 7 suitable for X-ray diffraction study were grown from tetrahydrofuran-diethyl ether as a tetrahydrofuran solvate, $\mathbf{7} \cdot \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$. A perspective drawing of $\mathbf{7}$ is shown in Fig . 3. Selected bond lengths and angles are given in Table 2. The palladium adopts a square-planar geometry with a cis- PdCl_{2} configuration. The bond angles around Pd range from 82.9(2) to 95.65(9) ${ }^{\circ}$. The $\left[\left(\mathrm{N}_{5} \mathrm{H}_{4}\right)\left\{\left(\mathrm{Ph}_{2} \mathrm{PNH}\right) \mathrm{C}(=\mathrm{NH})\right\}-4\right]$ moiety acts as a chelating ligand with theimino [$\mathrm{N}(2)$] and phosphino (P) groups co-ordinated to the palladium forming a five-membered ring. Delocalization about the $\mathrm{N}-\mathrm{C}-\mathrm{N}$ framework is also observed and reflected by the $\mathrm{P}-\mathrm{N}(1), \mathrm{C}(13)-\mathrm{N}(1)$ and $\mathrm{C}(13)-\mathrm{N}(2)$ distances of $1.699(7), 1.366(10)$ and $1.296(10) \AA$, respectively; and the $\mathrm{P}-\mathrm{N}(1)-\mathrm{C}(13)$ angle of $117.3(5)^{\circ}$.

Preparation of trans-[PdCl $2\left\{\mathrm{cis}_{2}-\mathrm{PdCl}_{2}\left[\left(\mathrm{NC}_{5} \mathrm{H}_{4}\right)\left\{\left(\mathrm{Ph}_{2} \mathrm{PNH}\right)\right.\right.\right.$ C($=$ N H) \}-4\} $\}_{2} 18$

When $\left[\mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}\right]$ was treated with $\mathbf{L}^{\mathbf{3}}$ in a 3:2 molar ratio in tetrahydrofuran for 2 d at ambient temperature, subsequent
work-up gave yellow crystals of stoichiometry $\mathrm{C}_{36} \mathrm{H}_{32} \mathrm{Cl}_{6}$ $\mathrm{N}_{6} \mathrm{P}_{2} \mathrm{Pd}_{3} \cdot 4 \mathrm{C}_{3} \mathrm{H}{ }_{7} \mathrm{NO}\left(8 \cdot 4 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)$ in moderate yield (55\%) after recrystallisation from dimethylformamide-tetrahydrofuran. Compound 8 can be formulated as trans- $\left[\mathrm{PCC}_{2}\{c \mathrm{cis}-\right.$ $\left.\left.\mathrm{PdCl}_{2}\left[\left(\mathrm{NC}_{5} \mathrm{H}_{4}\right)\left\{\left(\mathrm{Ph}_{2} \mathrm{PNH}\right) \mathrm{C}(=\mathrm{NH})\right\}-4\right]\right\}_{2}\right]$. The structure was established by X -ray diffraction analysis to be a trinuclear species with C_{i} symmetry.

Crystals of $\mathbf{8}$ suitable for X -ray diffraction study were grown from a solution of dimethylformamide-tetrahydrofuran as a dimethylformamide (dmf) solvate, $\mathbf{8} \cdot 4 \mathrm{dmf}$. A perspective drawing of 8 is shown in Fig. 4. Selected bond lengths and angles are given in Table 2. The trinuclear species is centrosymmetric with the three palladium centres linked together via two $\left[\left(\mathrm{NC}_{5} \mathrm{H}_{4}\right)\left\{\left(\mathrm{Ph}_{2} \mathrm{PNH}\right) \mathrm{C}(=\mathrm{NH})\right\}-4\right]$ moieties in a linear conformation. All three palladium centres adopt a square planar geometry with the central metal $[\operatorname{Pd}(1)]$ having a trans- and the terminal metals $\left[\mathrm{Pd}(2)\right.$ and $\left.\mathrm{Pd}\left(2^{*}\right)\right]$ a cis- PdCl_{2} configuration. The bond angles around the palladium centres range from 89.9(2) and 90.1(2) for the central palladium $\mathrm{Pd}(1)$; and $80.0(3)$ to $94.8(1)^{\circ}$ for the terminal palladium atoms. The $\left[\left(\mathrm{NC}_{5} \mathrm{H}_{4}\right)\left\{\left(\mathrm{Ph}_{2} \mathrm{PNH}\right) \mathrm{C}(=\mathrm{NH})\right\}-4\right]$ moieties behave as tridentate bridges with the imino $[\mathrm{N}(3)]$ and phosphino $[\mathrm{P}(1)]$ groups coordinated to the terminal cis- PdCl_{2} moieties forming fivemembered rings and the pyridino [$\mathrm{N}(1)$ and $\mathrm{N}\left(1^{*}\right)$] groups coordinated to the central trans- PdCl_{2} moiety. Delocalization about the $\mathrm{N}-\mathrm{C}-\mathrm{N}$ framework is also observed and reflected by the $\mathrm{C}(6)-\mathrm{N}(2)$ and $\mathrm{C}(6)-\mathrm{N}(3)$ distances of $1.36(1)$ and $1.27(1)$ \AA, respectively, and $\mathrm{P}(1)-\mathrm{N}(2)-\mathrm{C}(6)$ bond angles of $113.8(7)^{\circ}$.

The spectroscopic data of compound 8 are consistent with its solid-state structure. The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\} \mathrm{N} M \mathrm{R}$ spectrum in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ exhibited a singlet at $\delta 85.6$ for the PPh_{2} group, it also exhibited a broad absorption at $3448 \mathrm{~cm}^{-1}$ in the IR spectrum (K Br) and four broad singlets at $\delta 9.36,9.60,10.52$ and 10.63 in the ${ }^{1} \mathrm{H}$ NMR spectrum for the NH groups.

Preparation of $\left[\mathrm{Pd}\left\{\left(\mathrm{NC}_{5} \mathrm{H}_{4}\right)\left[\left(\mathrm{Ph}_{2} \mathrm{PNH}\right) \mathrm{C}(=\mathrm{NH})\right]-4\right\}\left\{\left(\mathrm{NC}_{5} \mathrm{H}_{4}\right)-\right.\right.$ [(P h_{2} PNH)C (=N)]-4\} $]\left[B F_{4}\right] 9$

When $\left[\mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}\right]$ was treated with \mathbf{L}^{3} in a $1: 2$ molar ratio in tetrahydrofuran for 1 d at $55^{\circ} \mathrm{C}$ followed by metathesis with excess $\mathrm{NH}_{4} B F_{4}$ in methanol, subsequent work-up gave white crystals of stoichiometry $\mathrm{C}_{36} \mathrm{H}_{31} \mathrm{BF}_{4} \mathrm{~N}_{6} \mathrm{P}_{2} \mathrm{Pd} \cdot \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$ $\left(9 \cdot \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right.$) in high yield (80%) after recrystallization from dimethylformamide-tetrahydrofuran. The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}$ spectrum of 9 in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ exhibited two singlets at $\delta 86.4$ and 91.5 indicating the presence of two non-equivalent PPh_{2} groups. The lack of observable coupling between the two phosphorus atoms in a square-planar complex is characteristic of a

Fig. 5 Perspective view of the molecular structure of the cation of compound 9

Table 3 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for compounds 9 and 10

Compound $\mathbf{9}$		Compound 10	
$\mathrm{Pd}-\mathrm{P}(1)$	$2.248(1)$	$\mathrm{Pt}-\mathrm{P}(1)$	$2.218(6)$
$\mathrm{Pd}-\mathrm{P}(2)$	$2.263(1)$	$\mathrm{Pt}-\mathrm{P}(2)$	$2.246(6)$
$\mathrm{Pd}-\mathrm{N}(1)$	$2.058(4)$	$\mathrm{Pt}-\mathrm{N}(1)$	$2.07(2)$
$\mathrm{Pd}-\mathrm{N}(4)$	$2.046(4)$	$\mathrm{Pt}-\mathrm{N}(4)$	$2.03(2)$
$\mathrm{P}(1)-\mathrm{N}(2)$	$1.714(4)$	$\mathrm{P}(1)-\mathrm{N}(2)$	$1.73(2)$
$\mathrm{P}(2)-\mathrm{N}(5)$	$1.664(4)$	$\mathrm{P}(2)-\mathrm{N}(5)$	$1.67(2)$
$\mathrm{N}(1)-\mathrm{C}(1)$	$1.283(6)$	$\mathrm{N}(1)-\mathrm{C}(1)$	$1.26(2)$
$\mathrm{N}(2)-\mathrm{C}(1)$	$1.340(6)$	$\mathrm{N}(2)-\mathrm{C}(1)$	$1.30(2)$
$\mathrm{N}(4)-\mathrm{C}(19)$	$1.319(6)$	$\mathrm{N}(4)-\mathrm{C}(19)$	$1.27(2)$
$\mathrm{N}(5)-\mathrm{C}(19)$	$1.324(6)$	$\mathrm{N}(5)-\mathrm{C}(19)$	$1.34(2)$
$\mathrm{P}(1)-\mathrm{Pd}-\mathrm{P}(2)$	$106.05(4)$	$\mathrm{P}(1)-\mathrm{Pt}-\mathrm{P}(2)$	$106.3(2)$
$\mathrm{P}(1)-\mathrm{Pd}-\mathrm{N}(1)$	$81.3(1)$	$\mathrm{P}(1)-\mathrm{Pt}-\mathrm{N}(1)$	$80.1(5)$
$\mathrm{P}(2)-\mathrm{Pd}-\mathrm{N}(4)$	$79.1(1)$	$\mathrm{P}(2)-\mathrm{Pt}-\mathrm{N}(4)$	$79.2(5)$
$\mathrm{N}(1)-\mathrm{Pd}-\mathrm{N}(4)$	$93.5(2)$	$\mathrm{N}(1)-\mathrm{Pt}-\mathrm{N}(4)$	$94.3(7)$
$\mathrm{P}(1)-\mathrm{N}(2)-\mathrm{C}(1)$	$119.2(3)$	$\mathrm{P}(1)-\mathrm{N}(2)-\mathrm{C}(1)$	$116(1)$
$\mathrm{P}(2)-\mathrm{N}(5)-\mathrm{C}(19)$	$113.1(3)$	$\mathrm{P}(2)-\mathrm{N}(5)-\mathrm{C}(19)$	$112(1)$

cis configuration for the PPh_{2} groups. ${ }^{6}$ Compound 9 exhibited absorptions at 3243,3381 and $3442 \mathrm{~cm}^{-1}$ in the IR spectrum (KBr) and three broad singlets of relative intensity $1: 1: 1$ at $\delta 8.19,9.91$ and 10.58 for the NH groups in the ${ }^{1} \mathrm{H}$ N M R spectrum. The low-resolution mass spectrum (FAB, positive ion mode) exhibited a peak $\left[\left(M-\mathrm{BF}_{4}\right)\right.$ for $\left.{ }^{106} \mathrm{Pd}\right]$ at $\mathrm{m} / \mathrm{z} 715$. Based on the above data, the monocation of 9 should have an anionic imidophosphine ligand [4- $\left.\left(\mathrm{NC}_{5} \mathrm{H}_{4}\right)\left(\mathrm{Ph}_{2} \mathrm{PNH}\right) \mathrm{C}=\mathrm{N}\right]^{-}$as well as a neutral iminophosphine ligand $\left[4-\left(\mathrm{NC}_{5} \mathrm{H}_{4}\right)\left(\mathrm{Ph}_{2} \mathrm{PNH}\right) \mathrm{C}=\mathrm{NH}\right]$ co-ordinated to the Pd" metal centre forming two nonequivalent chelating five-membered rings. Thus, compound 9 can be formulated as cis-[Pd\{(NC544)[(Ph2PH)C(=NH)]4\} $\left.\left\{\left(\mathrm{NC}_{5} \mathrm{H}_{4}\right)\left[\left(\mathrm{Ph}_{2} \mathrm{PNH}\right) \mathrm{C}(=\mathrm{N})\right]-4\right\}\right]\left[B F_{4}\right]$. This was confirmed by a single crystal X -ray diffraction study.
White crystals of $9 \cdot \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{~N} O$ suitable for an X -ray diffraction study were grown by slow diffusion of tetrahydrofuran into a solution of compound 9 in dimethylformamide. A perspective drawing of the cation of compound 9 is shown in Fig. 5. Selected bond lengths and angles are given in Table 3. The geometry of the palladium atom is approximately square planar with the two phosphino ligands in a cis configuration and the bond angles around Pd ranging from 78.7(1) to 106.05(4) ${ }^{\circ}$ and summing to about 360°. Steric repulsion between the two bulky cis-PPh h_{2} groups causes a significant deviation of the $P(1)-\mathrm{Pd}-\mathrm{P}(2)$ angle $\left[106.05(4)^{\circ}\right]$ from the ideal angle (90°). The $\mathrm{Pd}-\mathrm{N}(4)$ distance $[2.046(4) \AA$] is slightly shorter than the

Scheme 2 Hydrogen-bond formation between methanol and compound 9

Pd-N (1) distance [2.058(4) \AA]. This would be expected if $N(4)$ is the anionic imide $(\mathrm{C}=\mathrm{N})^{-}$forming a σ bond with Pd , and $N(1)$ is the neutral imine ($\mathrm{C}=\mathrm{NH}$) forming a dative bond with Pd. F urthermore, it is anticipated that π back donation from Pd to $P(1)$ will be stronger than from $P d$ to $P(2)$ if $N(4)$ which is trans to $P(1)$ is the electron-rich anionic imide and $N(1)$ which is trans to $\mathrm{P}(2)$ is the neutral imine. The degree of π back donation can be reflected by the Pd-P distances which would be shorter for stronger π back donation. ThePd-P(1) distance [2.248(1) \AA] is slightly shorter than the $\mathrm{Pd}-\mathrm{P}(2)$ distance $[2.263(1) \AA$]. Thus, N (4) can be assigned as the anionic imide nitrogen and $N(1)$ as the neutral imine nitrogen. Both the anionic imidophosphine moiety $\left[\left(\mathrm{NC}_{5} \mathrm{H}_{4}\right)\{(\mathrm{Ph} 2 \mathrm{PNH}) \mathrm{C}(=\mathrm{N})\}-4\right]^{-}$and the neutral iminophosphine moiety $\left[\left(\mathrm{NC}_{5} \mathrm{H}_{4}\right)\left\{\left(\mathrm{Ph}_{2} \mathrm{PNH}\right) \mathrm{C}=(\mathrm{NH})\right\}\right.$-4] behave as chelating ligands with the imido [$N(4)]$ and phosphino $[P(2)]$ groups of the anionic imidophosphine ligand, and the imino [$N(1)$] and phosphino $[P(1)]$ groups of the neutral iminophosphine ligand co-ordinated to the palladium forming two fivemembered rings. The $\mathrm{P}(1)-\mathrm{N}(2), \mathrm{C}(1)-\mathrm{N}(1)$ and $\mathrm{C}(1)-\mathrm{N}(2)$ distances are 1.714(4), 1.283(6) and $1.340(6) \AA$, respectively; and the $P(1)-N(2)-C(1)$ angle is $119.2(3)^{\circ}$ for the neutral iminophosphine ligand. The $\mathrm{P}(2)-\mathrm{N}(5), \mathrm{C}(19)-\mathrm{N}(4)$ and $\mathrm{C}(19)-\mathrm{N}(5)$ distances are $1.664(4), 1.319(6)$ and $1.324(6) \AA$, respectively; and the $\mathrm{P}(2)-\mathrm{N}(5)-\mathrm{C}(19)$ angle is $113.1(3)^{\circ}$ for the anionic iminophosphine ligand. The structural data indicate delocalization about the $\mathrm{N}-\mathrm{C}-\mathrm{N}$ framework for both ligands.
When 9 was dissolved in $C_{3} O D$, the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\} \mathrm{N} M \mathrm{R}$ spectrum only exhibited a singlet at $\delta 90.4$ indicating that the two $P P h_{2}$ groups had become equivalent. This is probably due to the formation of hydrogen-bonding between the methanol and the imino and imido groups as shown in Scheme 2.

Preparation of $\left[\mathrm{Pt}\left\{\left(\mathrm{NC}_{5} \mathrm{H}_{4}\right)\left[\left(\mathrm{Ph}_{2} \mathrm{PNH}\right) \mathrm{C}(=\mathrm{NH})\right\} 4\right\}\left\{\left(\mathrm{NC}_{5} \mathrm{H}_{4}\right)\right.\right.$ [$\left.\left.\left.\left(\mathrm{Ph}_{2} \mathrm{PNH}\right) \mathrm{C}(=\mathrm{N})\right]-4\right\}\right]\left[B \mathrm{~F}_{4}\right] 10$

The result of the interaction of $\left[\mathrm{PtCl}_{2}(\mathrm{PhCN})_{2}\right]$ with 2 equivalents of $\mathbf{L}^{\mathbf{3}}$ is similar to that of the Pd analogue 9 . M etathesis of the Pt complex with $\mathrm{NH}_{4} \mathrm{BF}_{4}$ in methanol gave white crystals of stoichiometry $\mathrm{C}_{36} \mathrm{H}_{31} \mathrm{BF}_{4} \mathrm{~N}_{6} \mathrm{P}{ }_{2} \mathrm{Pt} \cdot \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO} \quad\left(10 \cdot \mathrm{C}_{3} \mathrm{H}{ }_{7} \mathrm{NO}\right)$ in high yield (76%) after recrystallization from dimethyl-formamide-tetrahydrofuran. The spectroscopic data of compound $\mathbf{1 0}$ are very similar to those of 9 . The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NM R spectrum in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ exhibited two singlets at $\delta 68.1$ $\left(J_{\text {pt P P }}=3036 \mathrm{~Hz}\right)$ and $71.0\left(\mathrm{~J}_{\text {pt } \mathbf{p}}=3223 \mathrm{~Hz}\right.$) indicative of a cis configuration for the two non-equivalent PPh_{2} groups. Compound 10 also exhibited absorptions at 3243,3381 and 3442 cm^{-1} in the IR spectrum (K Br) and two broad singlets of relative intensity $1: 2$ at $\delta 10.58$ and 11.06 in the ${ }^{1} \mathrm{H} \mathrm{N} \mathrm{M} \mathrm{R} \mathrm{spectrum}$ for the NH groups. The low-resolution mass spectrum (FAB,

Fig. 6 Perspective view of the molecular structure of the cation of compound 10

10

Scheme 3 Solution dynamic behaviour of compound 10
positive ion mode) exhibited a peak [$\left(\mathrm{M}-\mathrm{BF}_{4}\right)$ for $\left.{ }^{195} \mathrm{Pt}\right]$ at m / z 804. Thus compound $\mathbf{1 0}$ can be formulated as cis-[Pt\{($\left.\mathrm{NC}_{5} \mathrm{H}_{4}\right)$ $\left.\left.\left[\left(\mathrm{Ph}_{2} \mathrm{PNH}\right) \mathrm{C}(=\mathrm{NH})\right]-4\right\}\left\{\left(\mathrm{NC}_{5} \mathrm{H}_{4}\right)\left[\left(\mathrm{Ph}_{2} \mathrm{PNH}\right) \mathrm{C}(=\mathrm{N})\right]-4\right\}\right]\left[\mathrm{BF} \mathrm{F}_{4}\right]$ confirmed by an X -ray diffraction analysis.

Crystals of $10 \cdot \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$ suitable for an X-ray diffraction study were grown by slow diffusion of tetrahydrofuran into a solution of 10 in dimethylformamide A perspective drawing of the cation of compound 10 is shown in Fig. 6. Selected bond lengths and angles are given in Table 3. Compounds 9 and 10 are isomorphous. The geometry of the platinum atom is approximately square planar with the two phosphino ligands in a cis configuration and the bond angles around Pt ranging from $79.2(5)$ to $106.3(2)^{\circ}$.

Compound 10 exhibited temperature-dependent ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NM R spectra. The variable-temperature ${ }^{31} \mathrm{P}$ - $\left\{{ }^{1} \mathrm{H}\right\}$ N M R spectra of 10 in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ revealed that at $100^{\circ} \mathrm{C}$ the two singlets coalesced to a broad singlet at $\delta 69.5$. The observed solution dynamic behaviour is probably due to the intramolecular hydrogen exchange process shown in Scheme 3. Similar to 9 , the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\} \mathrm{N}$ M R spectra of $\mathbf{1 0}$ in $\mathrm{CD}_{3} \mathrm{OD}$ exhibited only a singlet at $\delta 71.8\left(\mathrm{~J}_{\text {pt }} \mathrm{p}=3129 \mathrm{~Hz}\right.$) for the two PPh_{2} groups indicating formation of hydrogen bonding between the methanol and the imino and imido groups.

The formation of $\left(\mathrm{NC}_{5} \mathrm{H}_{4}\right)\left\{\left(\mathrm{Ph}_{2} \mathrm{PNH}\right) \mathrm{C}(=\mathrm{NH})\right\}-4$ from
 shift followed by hydrolysis. A similar mechanism has been
proposed for related complexes. ${ }^{6}$ The N H protons of theimidoand imino-phosphine ligands are very labile and undergo facile deuterium exchange with $D_{2} \mathrm{O}$ at ambient temperature indicating significant delocalization about the $\mathrm{N}-\mathrm{C}-\mathrm{N}$ framework. ${ }^{3,5,6}$ This is supported by the structural data of compounds 1, 4, 7, 8, 9 and 10 which show that the two $\mathrm{C}-\mathrm{N}$ distances of the $\mathrm{N}-\mathrm{C}-\mathrm{N}$ framework are intermediate between those expected for single and double bonds.

Experimental

Procedures
All operations were carried out in an atmosphere of dry nitrogen or in vacuo. Solvents were dried by standard procedures, distilled and deaerated prior to use All chemicals used were of reagent grade, obtained from the A Idrich Chemical Company and, where appropriate, degassed before use. The compounds $\left(\mathrm{Ph}_{2} \mathrm{PN}=\right) \mathrm{C}(\mathrm{Ph})\left[\mathrm{N}\left(\mathrm{SiM}_{3}\right)_{2}\right],{ }^{6} \quad \mathrm{C}_{6} \mathrm{H}_{4}\left\{\mathrm{C}\left(=\mathrm{NPPh}_{2}\right)\left[\mathrm{N}\left(\mathrm{SiM} \mathrm{e}_{3}\right)_{2}\right]\right\}_{2}$ $1,4^{6}$ and $\left[\mathrm{M} \mathrm{Cl}_{2}(\mathrm{PhCN})_{2}\right]^{8}(\mathrm{M}=\mathrm{Pd}$ or Pt) were prepared according to literature methods. The compound [$\left.\mathrm{NiBr}_{2}(\mathrm{dme})\right]$ was prepared by reacting a suspension of nickel powder in dme with stoichiometric amounts of bromine in dme. M icroanalyses were performed by the Shanghai Institute of Organic Chemistry, Chinese A cademy of Sciences, China. Infrared spectra were recorded on a N icolet N agna-IR 550 spectrometer, N M R spectra on a JEOL EX 270 spectrometer. Chemical shifts of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ N M R spectra were referenced to internal deuteriated solvents and then recalculated to $\mathrm{SiM}_{4}(\delta 0.00)$, those of ${ }^{31} \mathrm{p}$ $\left\{{ }^{1} \mathrm{H}\right\} \mathrm{N} M \mathrm{R}$ spectra were referenced to external $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$. Low-resolution mass spectra were obtained on a Finnigan M AT SSQ-710 spectrometer in FAB (positive ion) mode.

Preparations

$\left(\mathrm{NC}_{5} \mathrm{H}_{4}\right)\left\{\left(\mathrm{Ph}_{2} \mathbf{P N}=\right) \mathrm{C}\left[\mathbf{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right]\right\} \mathbf{4} \mathrm{L}^{3}$. A solution of $\mathrm{Li}[\mathrm{N}-$ $\left(\mathrm{SiM} \mathrm{e}_{3}\right)_{2}$], generated in situ by reacting $\mathrm{NH}\left(\mathrm{SiM} \mathrm{e}_{3}\right)_{2}(16.5 \mathrm{~g}, 102$ mmol) in diethyl ether ($60 \mathrm{~cm}^{3}$) with LiBu ($63 \mathrm{~cm}^{3}$ of $1.6 \mathrm{~m}, 101$ mmol) in hexane, was slowly added to a solution of 4-cyanopyridine ($10.4 \mathrm{~g}, 100 \mathrm{mmol}$) in tetrahydrofuran $\left(20 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. The resultant dark red solution was warmed to room temperature and stirred for an additional 2 h before cooling to $-78^{\circ} \mathrm{C}$. A solution of chlorodiphenylphosphine ($22.0 \mathrm{~g}, 100 \mathrm{mmol}$) in tetrahydrofuran ($50 \mathrm{~cm}^{3}$) was then slowly added to the reaction mixture which was stirred at $-78^{\circ} \mathrm{C}$ for an hour before warming to room temperature and allowed to react overnight. The solvent was then removed in vacuo. The residue was dissolved in dichloromethane ($40 \mathrm{~cm}^{3}$) and the solution was filtered through Celite to afford a clear red filtrate which was concentrated to ca. $20 \mathrm{~cm}^{3}$. H exane ($15 \mathrm{~cm}^{3}$) was added to the dichloromethane solution slowly until it just turned cloudy. The resultant solution was then cooled to $-20^{\circ} \mathrm{C}$ to give yellow crystals which were filtered off and dried in vacuo. Y ield: $40.1 \mathrm{~g}, 90 \%$, yellow crystals, m.p. $96-97^{\circ} \mathrm{C}$ (F ound: C, 64.1; H, 7.1; N, 9.5. Calc. for $\left.\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{PSi}_{2}: \mathrm{C}, 64.1 ; \mathrm{H}, 7.1 ; \mathrm{N}, 9.4 \%\right)$. IR (cm^{-1}, in K Br$)$: 3039w, 2958w, 2898w, 1588s, 1548w, 1480w, 1433m, 1404m, $1326 \mathrm{w}, 1260 \mathrm{~s}, 1246 \mathrm{~s}, 1209 \mathrm{w}, 1092 \mathrm{~s}, 1079 \mathrm{~m}, 1060 \mathrm{~m}, 930 \mathrm{~s}, 888 \mathrm{~s}$, 833vs, $761 \mathrm{~m}, 740 \mathrm{~s}, 695 \mathrm{~s}, 681 \mathrm{~m}, 637 \mathrm{w}, 557 \mathrm{w}, 512 \mathrm{~m}, 463 \mathrm{~m}$ and 418w. N M R (CDCl $)_{3}$: ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 36.5(\mathrm{~s}) ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}, \mathrm{C}=\mathrm{N}$ carbons, $\delta 167.9$ ($\mathrm{d}, \mathrm{J}_{\mathrm{p}-\mathrm{Nc}}=26.7$); pyridinyl and phenyl carbons, 127.6, 129.0 ($\mathrm{d}, \mathrm{J}_{\mathrm{P}-\mathrm{c}}=9.8$), 130.7 ($\mathrm{d}, \mathrm{J}_{\mathrm{P}-\mathrm{c}}=13.4$), 130.9, 137.5 ($\mathrm{d}, \mathrm{J}_{\mathrm{p}-\mathrm{c}}=39.0$) and $139.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=6.1 \mathrm{~Hz}\right.$); trimethylsilyl carbons, 2.7; ${ }^{1} \mathrm{H}$, phenyl and pyridinyl protons, $7.24(8 \mathrm{H}, \mathrm{m}), 7.49$ $(4 \mathrm{H}, \mathrm{m})$ and $8.57(2 \mathrm{H}, \mathrm{m})$; trimethylsilyl protons, $0.06(18 \mathrm{H}$, s). Positive-ion FAB mass spectrum: $\mathrm{m} / \mathrm{z} 450(\mathrm{M}+1)$.
cis-[$\left.\mathrm{NiBr}_{2}\left\{\left(\mathrm{Ph}_{2} \mathbf{P N H}\right) \mathbf{C}(\mathbf{P h})(=\mathbf{N H})\right\}\right]$. A solution of $\mathbf{L}^{\mathbf{1}}(1.0 \mathrm{~g}$, 2.2 mmol) in tetrahydrofuran ($20 \mathrm{~cm}^{3}$) was added to a stirring solution of $\left[\mathrm{NiBr}_{2}(\mathrm{dme})\right]$ ($0.7 \mathrm{~g}, 2.3 \mathrm{mmol}$) in tetrahydrofuran $\left(10 \mathrm{~cm}^{3}\right)$ at ambient temperature. The reaction mixture was then refluxed for 8 h . A brick-red precipitate was formed upon
cooling to ambient temperature, it was filtered off, washed with tetrahydrofuran ($4 \mathrm{~cm}^{3}$), and dried in vacuo. Y ield: $0.87 \mathrm{~g}, 76 \%$, red crystals, m.p. $234-236^{\circ} \mathrm{C}$ (decomp.) (Found: C, 43.5; H, 3.1; $\mathrm{N}, 5.4$. Calc. for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{Br}_{2} \mathrm{~N} \mathrm{~N}_{2} \mathrm{~N}$ iP: C, 43.7; H, 3.3; N, 5.4\%). IR (cm ${ }^{-1}$, in K Br): 3273s, 3051w, 2980w, 2874w, 1636w, 1588w, $1561 \mathrm{~m}, 1460 \mathrm{~s}, 1437 \mathrm{~s}, 1316 \mathrm{w}, 1099 \mathrm{~s}, 1040 \mathrm{~m}, 885 \mathrm{w}, 825 \mathrm{~m}, 775 \mathrm{~m}$, $747 \mathrm{~m}, 694 \mathrm{~s}, 533 \mathrm{~m}$ and 492 s . NM R (CDCl $)$: ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 76.1$ (s); ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}, 127.4,127.9,129.0,129.5,132.8$ and $133.6 ;{ }^{1} \mathrm{H}$, phenyl and pyridinyl protons, $7.38-7.61(11 \mathrm{H}, \mathrm{m})$ and 8.05 ($4 \mathrm{H}, \mathrm{br}, \mathrm{s}$); NH proton, $5.48(1 \mathrm{H}, \mathrm{br}, \mathrm{s})$ and $7.31(1 \mathrm{H}, \mathrm{br}, \mathrm{s})$.
cis- $\left[\mathrm{Ni}\left\{\left(\mathrm{Ph}_{2} \mathbf{P N H}\right) \mathrm{C}(\mathrm{Ph})\left(=\mathrm{NH}_{)}\right\}_{2}\right]\left[\mathrm{B} \mathrm{F}_{4}\right]_{2}\right.$ 2. An aqueous solution of $\mathrm{NH}_{4} \mathrm{BF}_{4}(0.5 \mathrm{~g}, 4.8 \mathrm{mmol})$ was added to a solution of 1 ($0.5 \mathrm{~g}, 1.0 \mathrm{mmol}$) in methanol and the resultant solution was stirred overnight at room temperature to give a yellow precipitate which was filtered off, washed with water ($2 \times 5 \mathrm{~cm}^{3}$) and dried in vacuo. The yellow solid was dissolved in acetone and filtered. Diethyl ether was then slowly diffused into the filtrate to give yellow crystals which were filtered off and dried in vacuo. Y ield: $0.35 \mathrm{~g}, 47 \%$, yellow crystals, m.p. $210-214^{\circ} \mathrm{C}$ (decomp.) (Found: C, 54.5; H, 3.8; N, 7.0. Calc. for $\mathrm{C}_{38} \mathrm{H}_{34}{ }^{-}$ $\left.\mathrm{B}_{2} \mathrm{~F}_{8} \mathrm{~N}_{4} \mathrm{NiP}_{2}: \mathrm{C}, 54.2 ; \mathrm{H}, 4.1 ; \mathrm{N}, 6.7 \%\right)$. IR (cm^{-1}, in K Br): 3429m, 3127s, 2926m, 2858w, 1596w, 1564w, 1463m, 1429m, 1401 s , 1314w, 1106vs, 1071vs, 1035vs, 828w, 788w, 744w, 690m, $534 \mathrm{~m}, 521 \mathrm{~m}, 498 \mathrm{w}$ and 474 w . NMR [(CD $\left.)_{2} \mathrm{CO}\right]:{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$, $\delta 91.6(\mathrm{~s}) ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}, \mathrm{C}=\mathrm{N}$ carbons, $175.5(\mathrm{br}, \mathrm{s}) ;$ phenyl carbons, 124.9, 125.3, 125.7, 129.2, 130.5 ($\mathrm{t}, \mathrm{J}_{\mathrm{P}-\mathrm{c}}=6.1$), 134.1 (t , $\left.\mathrm{J}_{\mathrm{p}-\mathrm{c}}=6.1\right), 134.9\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{pc}}=14.2 \mathrm{~Hz}\right)$ and $135.3 ;{ }^{1} \mathrm{H}, \mathrm{NH}$ protons, 7.10 ($2 \mathrm{H}, \mathrm{br}, \mathrm{s}$), 8.68 ($2 \mathrm{H}, \mathrm{br}$, s); phenyl protons, $7.40-7.83$ $(26 \mathrm{H}, \mathrm{m}), 8.03(4 \mathrm{H}, \mathrm{m})$. Positive ion FA B mass spectrum: m/z $665\left(M+1-B F_{4}\right)$.
cis-[$\left.\mathrm{Ni}\left\{\left(\mathrm{NC}_{5} \mathrm{H}_{4}\right)\left[\left(\mathrm{Ph}_{2} \mathrm{PNH}\right) \mathrm{C}(=\mathrm{NH})\right]-4\right\}\right]\left[\mathrm{BF}_{4}\right]_{2}$ 3. A solution of $[\mathrm{NiBr}(\mathrm{dme})](0.69 \mathrm{~g}, 2.2 \mathrm{mmol})$ in tetrahydrofuran ($10 \mathrm{~cm}^{3}$) was added to a stirring solution of $\mathrm{L}^{3}(1.0 \mathrm{~g}, 2.2 \mathrm{mmol})$ in tetrahydrofuran ($15 \mathrm{~cm}^{3}$) at ambient temperature. The mixture after reacting for 1 d gave a yellow precipitate which was filtered off, washed with tetrahydrofuran $\left(2 \times 10 \mathrm{~cm}^{3}\right)$, dissolved in methanol and filtered. Then an aqueous solution ($5 \mathrm{~cm}^{3}$) of $\mathrm{NH}_{4} \mathrm{BF}_{4}(0.5 \mathrm{~g}, 4.8 \mathrm{mmol})$ was added to the filtrate to give a yellow precipitate which was filtered off, washed with water $\left(2 \times 5 \mathrm{~cm}^{3}\right)$, dissolved in acetone and filtered. Diethyl ether slowly diffused into the filtrate to give yellow crystals. Y ield: $0.51 \mathrm{~g}, 55 \%$, yellow crystals, m.p. $240-242^{\circ} \mathrm{C}$ (decomp.) (Found: C, 51.0, H, 3.7; N, 10.3. Calc. for $\mathrm{C}_{36} \mathrm{H}_{32} \mathrm{~B}_{2} \mathrm{~F}_{8} \mathrm{~N}_{6} \mathrm{~N} \mathrm{iP}_{2}$: C, 51.3 ; $\mathrm{H}, 3.8 ; \mathrm{N}, 10.0 \%$). IR (cm^{-1}, in K Br): 3385 m , 3332 m , $3237 \mathrm{~s}, 3112 \mathrm{~m}, 3056 \mathrm{~m}, 2791 \mathrm{w}, 1695 \mathrm{w}, 1650 \mathrm{w}, 1589 \mathrm{~m}, 1549 \mathrm{w}$, $1470 \mathrm{vs}, 1434 \mathrm{~s}, 1357 \mathrm{w}, 1280 \mathrm{~m}, 1226 \mathrm{w}, 1130 \mathrm{~m}, 1102 \mathrm{~s}$, 1070 w , $1006 \mathrm{~m}, 880 \mathrm{w}, 835 \mathrm{vs}, 809 \mathrm{~m}, 748 \mathrm{~s}, 703 \mathrm{~s}, 689 \mathrm{vs}, 670 \mathrm{~m}, 618 \mathrm{w}$, $560 \mathrm{w}, 537 \mathrm{~m}, 522 \mathrm{~m}, 499 \mathrm{~m}, 488 \mathrm{~m}, 470 \mathrm{~m}$ and 418 w . NMR [$\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right]$: ${ }^{31 \mathrm{P}}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 92.5(\mathrm{~s}) ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$, pyridinyl and phenyl carbons, 122.4, 124.7, 125.2, 125.6, 130.5 ($\mathrm{t}, \mathrm{J}=6.1$), 134.2 (t, J $=6.1 \mathrm{~Hz}$), 134.9, 151.8 and $174.2 ;{ }^{1} \mathrm{H}, \mathrm{NH}$ protons, 7.80 $(2 \mathrm{H}, \mathrm{br}, \mathrm{s}), 8.89(2 \mathrm{H}, \mathrm{br}, \mathrm{s})$; pyridinyl and phenyl protons, 7.35 $(8 \mathrm{H}, \mathrm{m}), 7.62(12 \mathrm{H}, \mathrm{m}), 7.88(4 \mathrm{H}, \mathrm{m})$ and $8.77(4 \mathrm{H}, \mathrm{m})$. Positive-ion FAB mass spectrum: $\mathrm{m} / \mathrm{z} 668\left(\mathrm{M}-2 \mathrm{BF}_{4}\right)$.
cis-[PdCl $\left.I_{2}\left\{\left(\mathrm{Ph}_{2} \mathrm{PNH}\right) \mathrm{C}(\mathrm{Ph})(=\mathrm{NH})\right\}\right]$ 4. This compound was prepared as described for $\mathbf{1}:\left[\mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}\right](0.34 \mathrm{~g}, 0.9 \mathrm{mmol})$, $\mathrm{L}^{1}(0.40 \mathrm{~g}, 0.9 \mathrm{mmol})$ and acetonitrile ($30 \mathrm{~cm}^{3}$) were used. Yellow crystals of $4 \cdot \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$ were obtained from acetonitriletetrahydrofuran. Y ield: $0.30 \mathrm{~g}, 60 \%$, yellow crystals, m.p. 198$201{ }^{\circ} \mathrm{C}$ (decomp.) (Found: C, 49.6; H, 4.6; N, 5.6. Calc. for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{OPPd}: \mathrm{C}, 49.9 ; \mathrm{H}, 4.5 ; \mathrm{N}, 5.1 \%$). IR (cm^{-1}, in K Br): $3449 \mathrm{~m}, 3229 \mathrm{~s}, 3054 \mathrm{~m}, 2977 \mathrm{w}$, 2878w, 2763w, 1677w, 1640w, 1594s, 1570s, 1505w, 1462vs, 1436vs, 1332w, 1236w, 1111s, $1049 \mathrm{~m}, ~ 997 \mathrm{w}, 889 \mathrm{~m}, 831 \mathrm{~m}, 782 \mathrm{~m}, 748 \mathrm{~m}, 720 \mathrm{~m}, 705 \mathrm{~s}, 695 \mathrm{vs}$, $588 \mathrm{~m}, 537 \mathrm{~m}, 487 \mathrm{~s}, 471 \mathrm{~m}$ and $442 \mathrm{w} . \mathrm{NM}$ R ($\mathrm{CD}_{3} \mathrm{CN}$): ${ }^{31 \mathrm{P}}-$ $\left.^{1} \mathrm{H}\right\}$, $\delta 85.2(\mathrm{~s}) ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}, \mathrm{C}=\mathrm{N}$ carbons, $174.1\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{Nc}}=12.2\right)$; phenyl carbons, $129.1,129.9,130.1\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=12.2\right), 133.9(\mathrm{~d}$,
$J_{\mathrm{p}-\mathrm{C}}=12.2$), 134.1 and $134.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=2.4 \mathrm{~Hz}\right)$; thf carbons, 26.2 and $68.2 ;{ }^{1} \mathrm{H}, \mathrm{NH}$ protons, $8.14(2 \mathrm{H}, \mathrm{br}, \mathrm{s})$; phenyl protons, 7.48-7.75 ($11 \mathrm{H}, \mathrm{m}$) and $7.95(4 \mathrm{H}, \mathrm{m})$; thf protons, $1.79(4 \mathrm{H}$, $\mathrm{m})$ and $3.63(4 \mathrm{H}, \mathrm{m})$. Positive-ion FA B mass spectrum: $\mathrm{m} / \mathrm{z} 447$ $\left[(\mathrm{M}+1-\mathrm{Cl})\right.$ for ${ }^{106} \mathrm{Pd}$ and $\left.{ }^{35} \mathrm{C} \mathrm{I}\right]$.
cis-[$\left[\mathrm{PdCl}_{2}\right)_{2}\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left[\mathrm{C}\left(=\mathrm{NPPh}_{2}\right)\left\{\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right\} \mathrm{Pl}_{2}-1,4\right\}\right] \quad 5$ and cis-[(P PCI $\left.\left.I_{2}\right)_{2}\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left[\mathrm{C}\left(\mathrm{NHPPh}_{2}\right)(=\mathrm{NH})\right]_{2}-1,4\right\}\right] 6$. A solution of L^{2} $(0.33 \mathrm{~g}, 0.4 \mathrm{mmol})$ and $\left[\mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}\right](0.31 \mathrm{~g}, 0.8 \mathrm{mmol})$ in tetrahydrofuran ($10 \mathrm{~cm}^{3}$) was stirred overnight at ambient temperature to give an orange-red solution and a yellow precipitate. The solution was filtered, concentrated to ca. $5 \mathrm{~cm}^{3}$ and cooled to $-20^{\circ} \mathrm{C}$ to give orange-red crystals of 5 which werefiltered off and dried in vacuo. Y ield: $0.14 \mathrm{~g}, 30 \%$, orange-red crystals, m.p. 198-201 ${ }^{\circ} \mathrm{C}$ (decomp.) (Found: C, 45.2; H, 5.2; N , 4.7. Calc. for $\mathrm{C}_{44} \mathrm{H}_{60} \mathrm{Cl}_{4} \mathrm{~N}_{4} \mathrm{P}_{2} \mathrm{Pd}_{2} \mathrm{Si}_{4}: \mathrm{C}, 45.0 ; \mathrm{H}, 5.2 ; \mathrm{N}, 4.8 \%$). IR (cm^{-1}, in $\mathrm{KBr}): 3063 \mathrm{w}, 2979 \mathrm{w}, 2952 \mathrm{w}, 2915 \mathrm{w}, 1577 \mathrm{~m}, 1561 \mathrm{~m}, 1536 \mathrm{~s}$, $1436 \mathrm{~m}, 1397 \mathrm{w}, 1313 \mathrm{~s}, 1278 \mathrm{~m}, 1258 \mathrm{~m}, 1161 \mathrm{w}, 1099 \mathrm{~m}, 999 \mathrm{w}$, $982 \mathrm{~m}, 867 \mathrm{~s}, 845 \mathrm{vs}, 817 \mathrm{~m}, 778 \mathrm{w}, 743 \mathrm{~m}, 707 \mathrm{~m}, 689 \mathrm{~m}, 676 \mathrm{w}$, $643 \mathrm{w}, 625 \mathrm{w}, 578 \mathrm{~m}, 524 \mathrm{~s}, 501 \mathrm{~m}, 471 \mathrm{w}, 452 \mathrm{w}$ and 431 w . NMR ($\mathrm{CD}{ }_{3} \mathrm{CN}$): ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 57.6(\mathrm{~s}) ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}, 128.5,128.6,128.7$, 128.8, 128.9, 131.1, 131.3, 132.5, 132.6, 132.8, 134.0, 135.1 and 135.2; trimethylsilyl carbons, $3.2 ;{ }^{1} \mathrm{H}$, phenyl and phenylene protons, $7.37-7.60(18 \mathrm{H}, \mathrm{m}), 7.75(2 \mathrm{H}, \mathrm{m})$ and 8.14-8.26 (4 H , $\mathrm{m})$; trimethylsilyl protons, $0.32(36 \mathrm{H}$, s). Positive-ion FA B mass spectrum: $\mathrm{m} / \mathrm{z} 1137$ [(M -Cl$)$ for ${ }^{106} \mathrm{P}$ d and $\left.{ }^{35} \mathrm{Cl}\right]$.
The yellow precipitate was dissolved in dimethylformamide and filtered. Tetrahydrofuran slowly diffused into the yellow filtrate to give yellow crystals of $6 \cdot 6 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$ which werefiltered off and dried in vacuo. Y ield: $0.26 \mathrm{~g}, 50 \%$, yellow crystals, m.p. $302-305{ }^{\circ} \mathrm{C}$ (decomp.) (Found: $\mathrm{C}, 45.5 ; \mathrm{H}, 5.4 ; \mathrm{CI}, 10.5 ; \mathrm{N}, 10.7$. Calc. for $\mathrm{C}_{50} \mathrm{H}_{70} \mathrm{Cl}_{4} \mathrm{~N}_{10} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{Pd}_{2}: \mathrm{C}, 45.4 ; \mathrm{H}, 5.3 ; \mathrm{Cl}, 10.7 ; \mathrm{N}$, 10.6%). IR (cm^{-1}, in KBr): $3524 \mathrm{w}, 3060 \mathrm{w}, 1640 \mathrm{vs}, 1582 \mathrm{~s}$, $1524 \mathrm{~m}, 1460 \mathrm{~s}, 1432 \mathrm{~s}, 1412 \mathrm{~m}, 1386 \mathrm{~s}, 1354 \mathrm{~s}, 1254 \mathrm{~m}, 1156 \mathrm{w}$, $1100 \mathrm{~s}, 1014 \mathrm{w}, 878 \mathrm{w}, 852 \mathrm{w}, 804 \mathrm{~s}, 746 \mathrm{~m}, 714 \mathrm{w}, 684 \mathrm{~s}, 664 \mathrm{~m}, 536 \mathrm{~m}$ and 470 m . NMR [(CD $\left.)_{2} \mathrm{SO}\right]:{ }^{31 \mathrm{p}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 85.3(\mathrm{~s}) ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\} \text {, }}$ phenyl and phenylene carbons, $128.8,129.0,129.2,132.6,132.8$ and 133.0; dmf carbons, 30.7, 35.7 and $162.3 ;{ }^{1} \mathrm{H}, \mathrm{Pd}-\mathrm{N} \mathrm{H}$ protons, $10.43(2 \mathrm{H}, \mathrm{br}$ s); P-N H protons, $9.16(2 \mathrm{H}, \mathrm{br}$ s); phenyl and phenylene protons, $7.60-7.97(24 \mathrm{H}, \mathrm{m})$; methyl protons of dmf $2.69(18 \mathrm{H}, \mathrm{s})$ and $2.72(18 \mathrm{H}, \mathrm{s}) ; \mathrm{CHO}$ protons of dmf, $7.94(6 \mathrm{H}, \mathrm{s})$.
cis-[PdCl $\left.\left.\mathbf{2}_{2}\left(\mathrm{NC}_{5} \mathrm{H}_{4}\right)\left[\left(\mathrm{Ph}_{2} \mathrm{PNH}\right) \mathrm{C}(=\mathrm{NH})\right]-4\right\}\right]$ 7. A solution of $\left[\mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}\right](0.38 \mathrm{~g}, 1.0 \mathrm{mmol})$ in tetrahydrofuran $\left(10 \mathrm{~cm}^{3}\right)$ was added to a stirring solution of $\mathbf{L}^{3}(0.45 \mathrm{~g}, 1.0 \mathrm{mmol})$ in tetrahydrofuran ($15 \mathrm{~cm}^{3}$) at ambient temperature. U pon stirring for 16 h , the resulting yellow solution was filtered, concentrated to ca. $15 \mathrm{~cm}^{3}$ and cooled at $-20^{\circ} \mathrm{C}$ to give yellow crystals of 7. $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$ which were filtered off and dried in vacuo. Y ield: 0.36 $\mathrm{g}, 65 \%$, yellow crystals, m.p. $228-230^{\circ} \mathrm{C}$ (decomp.) (Found: C, 47.6; $\mathrm{H}, 4.4 ; \mathrm{N}, 7.5$. Calc. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{OPPd}$: C, 47.7 ; H , $4.4 ; \mathrm{N}, 7.6 \%$). IR (cm^{-1}, in K Br): $3448 \mathrm{~m}, 3214 \mathrm{~s}, 3052 \mathrm{~m}, 2969 \mathrm{~m}$, $2874 \mathrm{~m}, 2772 \mathrm{~m}, 2676 \mathrm{w}, 1583 \mathrm{~m}, 1548 \mathrm{~m}, 1496 \mathrm{~m}, 1460 \mathrm{vs}, 1434 \mathrm{vs}$, 1405m, 1340w, 1232w, 1104vs, 1070w, 1042s, 997w, 889m, 843s, 812s, $756 \mathrm{~m}, 744 \mathrm{~s}, 719 \mathrm{~m}, 707 \mathrm{~m}, 689 \mathrm{~s}, 661 \mathrm{w}, 578 \mathrm{~m}, 538 \mathrm{~m}, 490 \mathrm{~s}$, 476 s and 442 w . NMR [(CD $\left.)_{2} \mathrm{SO}\right]:{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 85.1$ (s); ${ }^{13} \mathrm{C}$ $\left\{{ }^{1} \mathrm{H}\right\}, \mathrm{C}=\mathrm{N}$ carbon, $171.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{Nc}}=12.2\right.$); pyridinyl carbons, 122.6, 133.0 and 150.0; phenyl carbons of $\mathrm{PPh}_{2}, 128.3,129.1$ (d , 12.2), 132.7 ($d, 13.4$) and 135.7 ($d, 12.2$); thf carbons, 25.1 and $67.0 ;{ }^{1} \mathrm{H}, \mathrm{NH}$ protons, $9.35(1 \mathrm{H}, \mathrm{br}, \mathrm{s})$ and $10.52(1 \mathrm{H}, \mathrm{br}, \mathrm{s})$; pyridinyl protons, $7.76(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.7)$ and $8.76(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.7$ $\mathrm{Hz})$; phenyl protons, $7.64(4 \mathrm{H}, \mathrm{m}), 7.72(2 \mathrm{H}, \mathrm{m})$ and $7.92(4 \mathrm{H}$, m); thf protons, $1.74(4 \mathrm{H}, \mathrm{m})$ and $3.59(4 \mathrm{H}, \mathrm{m})$. Positive-ion FAB mass spectrum: m/z $482\left[(M+1)\right.$ for ${ }^{106} \mathrm{P} d$ and $\left.{ }^{35} \mathrm{C}\right]$ and $446[(M-C I)]$.
trans-[PdCl $\mathrm{I}_{2}\left\{\mathrm{cis}^{\left.\left.-\mathrm{PdCl}_{2}\left[\left(\mathrm{NC}_{5} \mathrm{H}_{4}\right)\left\{\left(\mathrm{Ph}_{2} \mathrm{PNH}\right) \mathrm{C}(=\mathrm{NH})\right\} 4\right]\right\}_{2}\right] 8 .}\right.$ A solution of $\left[\mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}\right](0.38 \mathrm{~g}, 1.01 \mathrm{mmol})$ in tetrahydrofuran ($10 \mathrm{~cm}^{3}$) was added to a stirring solution of L^{3}

Table4 Data collection and processing parameters for compounds 1, 4, 7, 8,9 and 10*

	1	4
Empirical formula	$\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{NiP}$	$\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{OPPd}$
M	522.8	1234.1
Colour; habit	Red prism	Yellow prism
Crystal size/mm	$0.22 \times 0.22 \times 0.4524$	$0.27 \times 0.29 \times 0.32$
Crystal system	M onoclinic	M onoclinic
Spacegroup	P21/c (no. 14)	$\mathrm{P} 21 / \mathrm{C}$ (no.14)
a/Å	12.911(2)	9.540(2)
b/Å	11.880(3)	22.503(2)
c/Å	13.868(2)	11.802(2)
$\alpha \rho$		
$\beta \rho$	110.28(1)	111.28(1)
$\gamma \rho$		
U/A \AA^{3}	1995.2(7)	2360.9(6)
z	4	4
$\mathrm{D}_{\mathrm{c}} / \mathrm{g} \mathrm{cm}^{-3}$	1.740	1.558
μ / cm^{-1}	50.74	10.98
F(000)	1032	1120
2θ Range	3.0-48.0 ${ }^{\circ}$	6.0-45.0 ${ }^{\circ}$
Scan type	$\omega-2 \theta$	$\omega-2 \theta$
Scan rate (deg min ${ }^{-1}$ in ω)	16.0 (up to 6 scans)	16.0 (up to 6 scans)
Scan range (ω)	$(0.89+0.35 \tan \theta)^{\circ}$	$(0.84+0.35 \tan \theta)$
Reflections collected	3471	3405
I ndependent reflections ($\mathrm{R}_{\text {int }}$)	3313 (0.044)	3191 (0.018)
Observed reflections [1 ${ }_{\circ}>3.0 \sigma\left(\mathrm{I}_{0}\right)$]	1743	2458
No. variables	226	210
P Factor	0.007	0.011
R	0.030	0.040
R^{\prime}	0.028	0.046
Goodness of fit	1.16	2.42
L argest Δ / σ	0.02	0.04
Residual extrema/e \AA^{-3}	0.15, -0.16	0.86, -0.91

7	8	9	10
$\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{OPPd}$	$\mathrm{C}_{48} \mathrm{H}_{60} \mathrm{Cl}_{6} \mathrm{~N}_{10} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{Pd}_{3}$	$\mathrm{C}_{39} \mathrm{H}_{38} \mathrm{BF}_{4} \mathrm{~N}_{7} \mathrm{OP}_{2} \mathrm{Pd}$	$\mathrm{C}_{39} \mathrm{H}_{38} \mathrm{BF}_{4} \mathrm{~N}_{7} \mathrm{OP}_{2} \mathrm{Pt}$
Yellow block	Yellow block	Yellow block	Colourless plate
$0.21 \times 0.22 \times 0.26$	$0.22 \times 0.23 \times 0.26$	$0.12 \times 0.19 \times 0.21$	$0.27 \times 0.23 \times 0.21$
M onoclinic	Monoclinic	Triclinic	Triclinic
$\mathrm{P} 21 / \mathrm{c}$ (no.14)	$\mathrm{P} 21 / \mathrm{c}$ (no. 14)	$\mathrm{P} \overline{1}$ (no. 2)	$\mathrm{P} \overline{1}$ (no. 2)
9.386(1)	7.840(1)	9.047(1)	10.439(5)
22.657(2)	19.026(2)	10.543(1)	22.06(1)
11.854(1)	21.450)1)	22.089(2)	9.081(6)
		98.52(2)	101.16(7)
112.38(10)	97.85(2)	100.90(2)	100.65(5)
		100.58(2)	98.10(4)
2331.0(5)	3169.6(5)	1996.9(5)	1982(2)
4	2	2	2
1.581	1.503	1.457	1.616
11.13	11.92	6.05	36.66
1120	1440	892	956
2.0-45.0 0°	2.0-51.30	2.8-51.0 ${ }^{\circ}$	3.0-45.0 ${ }^{\circ}$
$\omega-2 \theta$	ω	ω	$\omega-2 \theta$
Variable 1.2 to 16.5	-	-	16.0 (up to 6 scans)
$(0.65+0.35 \tan \theta)^{\circ}$	-	-	$(1.10+0.35 \tan \theta)^{\circ}$
4480	23414	32141	5536
4248 (0.073)	5844 (0.023)	6691 (0.031)	5190 (0.092)
2420	3248	5640	2605
246	331	462	232
0.001	0.001	0.021	0.012
0.049	0.056	0.053	0.060
0.054	0.081	0.068	0.063
1.85	2.68	3.18	1.77
0.01	0.01	0.06	0.08
0.84, -0.79	1.78, - 0.49	0.93, -0.85	0.95, -0.79

* Details in common: Mo-K α radiation ($\lambda=0.71073 \AA$); solution methods, direct methods (SIR 92); refinement method, full-matrix least squares; quantity minimized, $\Sigma \mathrm{w}\left(\mid F_{\mathrm{o}} \mathrm{l} \text { - } \mathrm{F}_{\mathrm{c}}\right)^{2}$; weighting scheme $\mathrm{w}^{-1}=\sigma^{2}\left(\mathrm{~F}_{\mathrm{o}}\right)+\left[(\mathrm{P} / 2) \mathrm{F}_{\mathrm{o}}\right]^{2}$; refinement program, TEXSAN.
($0.30 \mathrm{~g}, 0.67 \mathrm{mmol}$) in tetrahydrofuran ($15 \mathrm{~cm}^{3}$) at ambient temperature. The reaction mixture, upon stirring for 2 d , gave a brownish-yellow precipitate which was filtered off, washed with tetrahydrofuran ($2 \times 10 \mathrm{~cm}^{3}$) and dried in vacuo. The brownish-yellow solid was dissolved in a minimum amount of dimethylformamide and filtered. Tetrahydrofuran diffused slowly into the yellow filtrate to give yellow crystals of $8 \cdot 4 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$ which were filtered off and dried in vacuo. Y ield: $0.21 \mathrm{~g}, 55 \%$, yellow crystals, m.p. $240-242^{\circ} \mathrm{C}$ (decomp.) (Found: $\mathrm{C}, 40.0 ; \mathrm{H}, 4.5 ; \mathrm{N}, 10.1$. Calc. for $\mathrm{C}_{48} \mathrm{H}_{60} \mathrm{Cl}_{6} \mathrm{~N}_{10} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{Pd}_{3}$: C, 40.2; H, 4.2; N, 9.8\%). IR ($\left.\mathrm{cm}^{-1}, \mathrm{~K} \mathrm{Br}\right): 3448 \mathrm{~s}(\mathrm{br}), 3100 \mathrm{w}$, 2964w, 2804w, 1651vs, 1600m, 1508w, 1477m, 1435s, 1387m, 1338w, 1252w, 1106s, 1063w, 1000w, 853m, 817m, 747m, 719m, $690 \mathrm{~m}, 664 \mathrm{~m}, 600 \mathrm{w}, 541 \mathrm{~m}, 523 \mathrm{w}$ and 487 m . NM R [(CD $\left.\left.)_{3}\right)_{2} \mathrm{SO}\right]:$ ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 85.6(\mathrm{~s}) ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$, pyridinyl carbons, 122.6, 132.9 and 153.0; phenyl carbons of $\mathrm{PPh}_{2}, 129.0(\mathrm{~d}, \mathrm{~J}=12.2)$ and 132.6 (d, 12.2); dmf carbons, 30.7, 35.7 and 162.2; ${ }^{1} \mathrm{H}, \mathrm{NH}$ protons, $\delta 9.36(1 \mathrm{H}, \mathrm{br}, \mathrm{s}), 9.60(1 \mathrm{H}, \mathrm{br}, \mathrm{s}), 10.52(1 \mathrm{H}, \mathrm{br}, \mathrm{s})$ and $10.63(1 \mathrm{H}, \mathrm{br}$, s); pyridinyl and phenyl protons, $7.20-7.60$ ($14 \mathrm{H}, \mathrm{br}, \mathrm{m}$), $7.90(8 \mathrm{H}, \mathrm{m}), 8.77(4 \mathrm{H}, \mathrm{br}, \mathrm{s})$ and $8.94(2 \mathrm{H}, \mathrm{d}$, J = 6.2 Hz); dmf protons, $2.71(12 \mathrm{H}, \mathrm{s}), 2.88(12 \mathrm{H}, \mathrm{s})$ and 7.94 ($4 \mathrm{H}, \mathrm{s}$).

cis- $\left[\mathrm{Pd}\left\{\left(\mathrm{NC}_{5} \mathrm{H}_{4}\right)\left[\left(\mathrm{Ph}_{2} \mathrm{PNH}\right) \mathrm{C}(=\mathrm{NH})\right\} 4\right\}\left\{\left(\mathrm{NC}_{5} \mathrm{H}_{4}\right)\left[\left(\mathrm{Ph}_{2} \mathrm{PNH}\right)\right.\right.\right.$ -

 $\mathbf{C}(=\mathrm{N})]-4\}]\left[\mathrm{BF}_{4}\right]$ 9. A solution of $\left[\mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}\right](0.46 \mathrm{~g}, 1.2$ mmol) in tetrahydrofuran ($10 \mathrm{~cm}^{3}$) was added to a stirring solution of $\mathrm{L}^{3}(1.26 \mathrm{~g}, 2.8 \mathrm{mmol})$ in tetrahydrofuran $\left(15 \mathrm{~cm}^{3}\right)$ at ambient temperature. The mixture after heating at $55^{\circ} \mathrm{C}$ for 1 d gave a white precipitate which was filtered off, washed with tetrahydrofuran ($2 \times 10 \mathrm{~cm}^{3}$), dissolved in methanol and filtered. Then an aqueous solution of $\mathrm{NH}_{4} \mathrm{BF}_{4}(0.50 \mathrm{~g}, 4.8 \mathrm{mmol})$ was added to the filtrate to give a white precipitate which was filtered off, washed with water ($2 \times 5 \mathrm{~cm}^{3}$), dissolved in dimethylformamide and filtered. Tetrahydrofuran slowly diffused into the filtrate to give white crystals of $9 \cdot \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$ which were filtered off and dried in vacuo. Y ield: $0.84 \mathrm{~g}, 80 \%$, whitecrystals, m.p. $240-242{ }^{\circ} \mathrm{C}$ (decomp.) (Found: C, 53.2; H , 4.4; N, 11.2. C alc. for $\mathrm{C}_{39} \mathrm{H}_{38} \mathrm{BF}_{4} \mathrm{~N}_{7} \mathrm{OP}_{2} \mathrm{Pd}: \mathrm{C}, 53.5 ; \mathrm{H}, 4.3 ; \mathrm{N}, 11.2 \%$). IR (cm^{-1}, in K Br): 3442s, 3381s, $3243 \mathrm{~m}, 3052 \mathrm{~m}$, 2928w, 1649vs, 1588 m , $1550 \mathrm{w}, 1506 \mathrm{~m}, 1481 \mathrm{~s}, 1435 \mathrm{~s}, 1385 \mathrm{~m}, 1349 \mathrm{w}, 1277 \mathrm{w}, 1123 \mathrm{~m}$, $1107 \mathrm{vs}, 1084 \mathrm{vs}, 1065 \mathrm{~m}, 1024 \mathrm{~m}, 997 \mathrm{~m}, 849 \mathrm{w}, 826 \mathrm{~s}, 806 \mathrm{~m}, 743 \mathrm{~m}$, 719w, 707m, 693m, 660m, 553m, 533m, 506m, 495s and 474m. NMR [(CD $\left.)_{3} \mathbf{S O}^{2}\right]:{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 86.4$ (s) and $91.5(\mathrm{~s}) ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$, pyridinyl and phenyl carbons, 121.7, 122.2, 128.3, 129.2 (br, s), 131.7 (br, s), 132.5 (br, s) and 150.8 (br, s); dmf carbons, 30.7, 35.7 and $162.3 ;{ }^{1} \mathrm{H}, \mathrm{NH}$ protons, $8.19(1 \mathrm{H}, \mathrm{br}, \mathrm{s}), 9.91(1 \mathrm{H}, \mathrm{br}$, s) and $10.58(1 \mathrm{H}, \mathrm{br}, \mathrm{s})$; pyridinyl and phenyl protons, 7.35 (20 $\mathrm{H}, \mathrm{br}, \mathrm{m}), 7.86(4 \mathrm{H}, \mathrm{br}, \mathrm{s}), 8.77(2 \mathrm{H}, \mathrm{br}, \mathrm{s})$ and $8.88(2 \mathrm{H}, \mathrm{br}, \mathrm{s})$; dmf protons, $2.72(3 \mathrm{H}, \mathrm{s}), 2.88(3 \mathrm{H}, \mathrm{s})$ and $7.94(1 \mathrm{H}, \mathrm{s})$. Positive-ion FA B mass spectrum: $\mathrm{m} / \mathrm{z} 715\left[\left(\mathrm{M}-\mathrm{BF}_{4}\right)\right.$ for $\left.{ }^{106} \mathrm{Pd}\right]$.
cis-[$\mathrm{Pt}\left\{\left(\mathrm{NC}_{5} \mathrm{H}_{4}\right)\left[\left(\mathrm{Ph}_{2} \mathrm{PNH}\right) \mathrm{C}(=\mathrm{NH})\right] \mathbf{4}\right\}\left\{\left(\mathrm{NC}_{5} \mathrm{H}_{4}\right)\left[\left(\mathrm{Ph}_{2} \mathrm{PNH}\right)\right.\right.$ -

 $\mathbf{C}(=\mathbf{N}) \mathbf{H} \mathbf{4}\}\left[\mathrm{BF}_{4}\right]$ 10. This compound was prepared in the same manner as described for compound 9: $\left[\mathrm{PtCl}_{2}(\mathrm{PhCN})_{2}\right](0.15 \mathrm{~g}$, $0.3 \mathrm{mmol})$ and $\mathbf{L}^{3}(0.32 \mathrm{~g}, 0.7 \mathrm{mmol})$ were used. White crystals of $10 \cdot \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$ were obtained. Y ield: $0.22 \mathrm{~g}, 76 \%$, white crystals, m.p. $240-242^{\circ} \mathrm{C}$ (decomp.) (Found: C, 48.8; H, 3.9; N, 10.6. Calc. for $\mathrm{C}_{39} \mathrm{H}_{38} \mathrm{BF}_{4} \mathrm{~N}_{7} \mathrm{OP} \mathrm{P}_{2} \mathrm{Pt}$: C, 48.6; H, 3.9; $\mathrm{N}, 10.2 \%$). IR (cm^{-1}, in K Br): $3442 \mathrm{~s}, 3381 \mathrm{~s}, 3243 \mathrm{~m}, 3052 \mathrm{w}, 2927 \mathrm{w}$, 1649vs, 1588w, 1550w, 1506w, 1481s, 1435s, 1385w, 1349w, 1277w, $1107 \mathrm{vs}, 1084 \mathrm{vs}, 1065 \mathrm{~m}, 1024 \mathrm{~m}, 997 \mathrm{w}, 849 \mathrm{w}, 826 \mathrm{~s}, 806 \mathrm{~m}, 743 \mathrm{~m}$, $719 w, 707 w, 693 m, 660 w, 553 w, 533 m, 506 m, 494 s$ and $474 m$. NMR $\left[\left(C D_{3}\right)_{2} \mathrm{SO}\right]:{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 68.1\left(\mathrm{~J}_{\mathrm{pt}} \mathrm{P}=3036\right)$ and 71.0 $\left(J_{\text {pt P }}=3223 \mathrm{~Hz}\right) ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$, pyridinyl and phenyl carbons, 122.1(br, s), 128.8 (br, s), 131.9 (br, m) and 150.6; dmf carbons, 30.7, 35.7 and 162.3; ${ }^{1} \mathrm{H}, \mathrm{NH}$ protons, 10.58 ($1 \mathrm{H}, \mathrm{br}, \mathrm{s}$), 11.06 (2 H , $\mathrm{br}, \mathrm{s})$; pyridinyl and phenyl protons, $7.32(20 \mathrm{H}, \mathrm{br}, \mathrm{s}), 7.91(4 \mathrm{H}$, br, s) and $8.85(4 \mathrm{H}, \mathrm{br}, \mathrm{s})$; dmf protons, $2.72(3 \mathrm{H}, \mathrm{s}), 2.88(3 \mathrm{H}$, s) and $7.94(1 \mathrm{H}, \mathrm{s})$. Positive-ion FAB mass spectrum: m/z 804 [(M $-\mathrm{BF}_{4}$) for ${ }^{195} \mathrm{Pt}$].

X-R ay crystallography

All pertinent crystallographic data and other experimental details are summarised in Table 4. Intensity data of 1,4 and 10 were collected on a Rigaku AFC7R diffractometer, 7 on a Enraf-N onius CAD4 diffractometer, 8 and 9 on a MAR research image plate scanner using graphite-monochromated M o-K α radiation ($\lambda=0.71073 \AA$) at room temperature. D ata of 1, 4, $\mathbf{7}$ and $\mathbf{1 0}$ were corrected for Lorentz and polarization factors and absorption using the ψ-scan method. For 8 and $9,653^{\circ}$ frames with an exposure time of 5 min per frame were used. Intensity data were corrected for Lorentz and polarization effects but not absorption. The structures were solved by a combination of direct methods (SIR 92) ${ }^{9}$ and Fourier-difference techniques. The solutions were refined by full-matrix leastsquares analysis on F until convergence was reached. For compounds 1, 4, 7, 8 and $\mathbf{9}$, all non-hydrogen atoms except atoms of the solvate molecule were refined anisotropically. For compound 10, only the Pt and P atoms were refined anisotropically and the rest of the non-hydrogen atoms were refined isotropically. Hydrogen atoms on the nitrogen were located from Fourier-difference synthesis using low angle data ($20<30^{\circ}$) while other hydrogen atoms on the organic moieties were generated at their ideal positions ($\mathrm{C}-\mathrm{H} 0.95 \AA$) and allowed to ride on their respective parent carbon atoms. These hydrogen atoms were assigned appropriate isotropic thermal parameters and included in the structure factor calculations but not in the refinement. All calculations were performed on a SiliconG raphics computer using the program package TEX SA N. ${ }^{10}$
CCDC reference number 186/606.

Acknowledgements

W.-K. W. thanks the Hong Kong Baptist U niversity and the Hong Kong Research Grants Council for financial support. W.-T. W. thanks the H ong Kong Research Grants Council and the U niversity of H ong K ong for financial support.

R eferences

1 W. K. Wong, T. Jiang and W. T. Wong, J. Chem. Soc., D alton Trans., 1995, 3087.
2 W. K. Wong, T. Jiang, D. W. J. K wong and W. T. Wong, Polyhedron, 1995, 14, 1109.
3 W. K. Wong, C. Sun, T. Jiang, W. T. Wong, F. X ueand T. C. W. M ak, J. C hem. Soc., D alton Trans., 1997, 693.

4 K. R. Dixon, M ultinuclear NM R, ed. J. M ason, Plenum Press, N ew York, 1987, ch. 13.
5 W. K. Wong, T. Jiang, D. W. J. K wong and W. T. Wong, Polyhedron, 1995, 14, 1695.
6 T. Chivers, K. M cG regor and M. Parvez, Inorg. Chem., 1993, 32, 5119.

7 W. K. Wong, C. Sun and W. T. Wong, unpublished work.
8 G. K . A nderson and M. Lin, Inorg. Synth., 1990, 28, 60.
9 G. Cascarano, L. Favia and C. Giacovazzo, SIR 92, J. A ppl. Crystallogr., 1992, 25, 310.
10 TEX SA N, Crystal Structure A nalysis Package, M olecular Structure Corporation, H ouston, TX, 1985 and 1992.

Received 2nd M ay 1997; Paper 7/03005C

